Author(s):
Indira Prakoso, Alfero Putra Iryanto, Tiara Rahayu, Anzillina Rahma, Muhammad Nur Aziz Ar Rizqi, Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Maksim Rebezov, Pavel Burkov, Marina Derkho, Belyakova Natalia, Rybakova Anna, Vikash Jakhmola, Rahadian Zainul
Email(s):
rahadianzmsiphd@fmipa.unp.ac.id
DOI:
10.52711/0974-360X.2024.00003
Address:
Indira Prakoso1, Alfero Putra Iryanto2, Tiara Rahayu3, Anzillina Rahma4, Muhammad Nur Aziz Ar Rizqi5, Viol Dhea Kharisma6,7, Arif Nur Muhammad Ansori8,9, Maksim Rebezov10,11,12, Pavel Burkov13, Marina Derkho13, Belyakova Natalia14, Rybakova Anna15, Vikash Jakhmola9, Rahadian Zainul16,17*
1Department of Food Science and Biotechnology, Brawijaya University, Malang, Indonesia.
2Department of Biotechnology, Esa Unggul University, Jakarta Barat, Indonesia.
3Faculty of Military Mathematics and Natural Sciences, The Republic of Indonesia Defense University, Bogor, Indonesia.
4Department of Electrical Engineering, University of Indonesia, Depok, Indonesia.
5Department of Biology, Diponegoro University, Semarang, Indonesia.
6Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
7Division of Molecular Biology and Genetics, Generasi Biologi Indonesia Foundation, Gresik, Indonesia.
8Faculty of Veterinary Medicine, Universitas Airlangg
Published In:
Volume - 17,
Issue - 1,
Year - 2024
ABSTRACT:
Klebsiella pneumoniae is a gram-negative of bacteria that are known to cause a variety of nosocomial respiratory tract infections including pneumonia. K. pneumoniae is also included in the ESKAPE bacteria group which has high resistance to antibiotics. Therefore, alternative treatment for K. pneumoniae infection is needed, one of which is by developing a vaccine. The aim of this study was to design a vaccine against K. pneumoniae by targeting the outer membrane protein using immunoinformatics approaches. 1,708 protein of K. pneumoniae was then screened using signalP, pred-TMBB2, and Blastp to select outer membrane proteins. The selected protein, PA1_KLEPN and BAMA_KLEP7 were then predicted using T-and B-cell Epitope Prediction on IEDB to obtain epitope regions. Vaccine design of K. pneumoniae consists of 1 BCL epitope, 2 CTL epitopes, 1 HTL epitope, an adjuvant and PADRE sequences constructed with linkers using Benchling. This vaccine construction is predicted to be non-toxic/allergenic and have a strong binding affinity with human TLR-4 with the HADDOCK score of -93.2kcal/mol, RMSD 0.5 and Z-score -2.5. According to the computer-aided studies conducted for this study, the chosen epitopes may provide excellent vaccine candidates to stop K. pneumoniae infections in people. However, in order to further confirm the efficacy of this suggested vaccine candidate, in vitro and in vivo validation is required.
Cite this article:
Indira Prakoso, Alfero Putra Iryanto, Tiara Rahayu, Anzillina Rahma, Muhammad Nur Aziz Ar Rizqi, Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Maksim Rebezov, Pavel Burkov, Marina Derkho, Belyakova Natalia, Rybakova Anna, Vikash Jakhmola, Rahadian Zainul. Multi-epitopes Vaccine Design against Klebsiella pneumoniae based on Outer Membrane Protein using Immunoinformatics Approaches. Research Journal of Pharmacy and Technology. 2024; 17(1):11-8. doi: 10.52711/0974-360X.2024.00003
Cite(Electronic):
Indira Prakoso, Alfero Putra Iryanto, Tiara Rahayu, Anzillina Rahma, Muhammad Nur Aziz Ar Rizqi, Viol Dhea Kharisma, Arif Nur Muhammad Ansori, Maksim Rebezov, Pavel Burkov, Marina Derkho, Belyakova Natalia, Rybakova Anna, Vikash Jakhmola, Rahadian Zainul. Multi-epitopes Vaccine Design against Klebsiella pneumoniae based on Outer Membrane Protein using Immunoinformatics Approaches. Research Journal of Pharmacy and Technology. 2024; 17(1):11-8. doi: 10.52711/0974-360X.2024.00003 Available on: https://rjptonline.org/AbstractView.aspx?PID=2024-17-1-3
REFERENCES:
1. Assoni L, Girardello R, Converso TR, Darrieux M. Current Stage in the Development of Klebsiella pneumoniae Vaccines. Infect Dis Ther. 2021; 10(4):2157-2175. DOI: 10.1007/s40121-021-00533-4.
2. Klebsiella pneumoniae in Healthcare Settings | HAI | CDC. https://www.cdc.gov/hai/organisms/klebsiella/klebsiella.html.
3. Kharisma VD, Kharisma SD, Ansori ANM, Kurniawan HP, Witaningrum AM, Fadholly A, Tacharina MR. Antiretroviral Effect Simulation from Black Tea (Camellia sinensis) via Dual Inhibitors Mechanism in HIV-1 and its Social Perspective in Indonesia. Res J Pharm Technol. 2021; 14(1): 455-460. DOI: 10.5958/0974-360X.2021.00083.4
4. Husen SA, Ansori ANM, Hayaza S, Susilo RJK, Zuraidah AA, Winarni D, Punnapayak H, Darmanto W. Therapeutic Effect of Okra (Abelmoschus esculentus Moench) Pods Extract on Streptozotocin-Induced Type-2 Diabetic Mice. Res J Pharm Technol. 2019; 12(8): 3703-3708. DOI: 10.5958/0974-360X.2019.00633.4
5. Azmi S, Aljunid SM, Maimaiti N, Ali AA, Muhammad Nur A, De Rosas-Valera M, Encluna J, Mohamed R, Wibowo B, Komaryani K, Roberts C. Assessing the burden of pneumonia using administrative data from Malaysia, Indonesia, and the Philippines. Int J Infect Dis. 2016; 49: 87-93. DOI: 10.1016/j.ijid.2016.05.021.
6. Sharma R, Sandrock CE, Meehan J, Theriault N. Community-Acquired Bacterial Pneumonia-Changing Epidemiology, Resistance Patterns, and Newer Antibiotics: Spotlight on Delafloxacin. Clin Drug Investig. 2020; 40(10): 947-960. DOI: 10.1007/s40261-020-00953-z
7. Proboningrat A, Kharisma VD, Ansori ANM, Rahmawati R, Fadholly A, Posa GAV, Sudjarwo SA, Rantam FA, Achmad AB. In silico Study of Natural inhibitors for Human papillomavirus-18 E6 protein. Res J Pharm Technol. 2022; 15(3):1251-6. DOI: 10.52711/0974-360X.2022.00209
8. Assefa M. Multi-drug resistant gram-negative bacterial pneumonia: etiology, risk factors, and drug resistance patterns. Pneumonia (Nathan). 2022; 14(1): 4. DOI: 10.1186/s41479-022-00096-z.
9. Kharisma VD, Ansori ANM, Jakhmola V, Rizky WC, Widyananda MH, Probojati RT, Murtadlo AAA, Rebezov M, Scherbakov P, Burkov P, Matrosova Y, Romanov A, Sihombing MAEM, Antonius Y, Zainul R. Multi-strain human papillomavirus (HPV) vaccine innovation via computational study: A mini review. Res J Pharm Technol. 2022; 15(8): 3802-7. DOI: 10.52711/0974-360X.2022.00638
10. Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther. 2020; 9: 13-30. DOI: 10.2147/ITT.S241064.
11. Fadholly A, Ansori ANM, Kharisma VD, Rahmahani J, Tacharina MR. Immunobioinformatics of Rabies Virus in Various Countries of Asia: Glycoprotein Gene. Res J Pharm Technol. 2021; 14(2): 883-886. DOI: 10.5958/0974-360X.2021.00157.8
12. García-Machorro J, Ramírez-Salinas GL, Martinez-Archundia M, Correa-Basurto J. The Advantage of Using Immunoinformatic Tools on Vaccine Design and Development for Coronavirus. Vaccines (Basel). 2022; 10(11): 1844. DOI: 10.3390/vaccines10111844.
13. Ansori ANM, Kharisma VD, Solikhah TI. Medicinal properties of Muntingia calabura L.: A Review. Res J Pharm Technol. 2021; 14(8): 4509-2. DOI: 10.52711/0974-360X.2021.00784
14. Fadholly A, Ansori ANM, Sucipto TH. An overview of naringin: Potential anticancer compound of citrus fruits. Res J Pharm Technol. 2020; 13(11): 5613-5619. DOI: 10.5958/0974-360X.2020.00979.8
15. Tsirigos KD, Elofsson A, Bagos PG. PRED-TMBB2: improved topology prediction and detection of beta-barrel outer membrane proteins. Bioinformatics. 2016; 32(17): i665-i671. DOI: 10.1093/bioinformatics/btw444.
16. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017; 45(W1): W24-W29. DOI: 10.1093/nar/gkx346.
17. Fadholly A, Ansori ANM, Utomo B. Anticancer Effect of Naringin on Human Colon Cancer (WiDr Cells): In Vitro Study. Research Journal of Pharmacy and Technology. 2022; 15(2): 885-888. DOI: 10.52711/0974-360X.2022.00148
18. Husen SA, Wahyuningsih SPA, Ansori ANM, Hayaza S, Susilo RJK, Winarni D, Punnapayak H, Darmanto W. Antioxidant Potency of Okra (Abelmoschus esculentus Moench) Pods Extract on SOD Level and Tissue Glucose Tolerance in Diabetic Mice. Res J Pharm Technol. 2019; 12(12): 5683. DOI: 10.5958/0974-360X.2019.00983.1
19. Husen SA, Setyawan MF, Syadzha MF, Susilo RJK, Hayaza S, Ansori ANM, Alamsjah MA, Ilmi ZN, Wulandari PAC, Pudjiastuti P, Awang P, Winarni D. A Novel Therapeutic effects of Sargassum ilicifolium Alginate and Okra (Abelmoschus esculentus) Pods extracts on Open wound healing process in Diabetic Mice. Research J. Pharm. and Tech 2020; 13(6): 2764-2770. DOI: 10.5958/0974-360X.2020.00491.6
20. Kaushik S, Kaushik S, Kumar R, Dar L, Yadav JP. In-vitro and in silico activity of Cyamopsis tetragonoloba (Gaur) L. supercritical extract against the dengue-2 virus. Virusdisease. 2020; 31(4): 470-478. DOI: 10.1007/s13337-020-00624-9.
21. Doytchinova IA, Flower DR. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics. 2007; 8: 4. DOI: 10.1186/1471-2105-8-4.
22. Wijaya RM, Hafidzhah MA, Kharisma VD, Ansori ANM, Parikesit AP. COVID-19 In Silico Drug with Zingiber officinale Natural Product Compound Library Targeting the Mpro Protein. Makara J Sci. 2021; 25(3): 5. DOI: 10.7454/mss.v25i3.1244
23. Stratmann T. Cholera Toxin Subunit B as Adjuvant--An Accelerator in Protective Immunity and a Break in Autoimmunity. Vaccines (Basel). 2015; 3(3): 579-96. DOI: 10.3390/vaccines3030579.
24. Reginald K, Chan Y, Plebanski M, Poh CL. Development of Peptide Vaccines in Dengue. Curr Pharm Des. 2018; 24(11): 1157-1173. DOI: 10.2174/1381612823666170913163904.
25. Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, Anishchenko I, Baker D, Yang J. The trRosetta server for fast and accurate protein structure prediction. Nat Protoc. 2021; 16(12): 5634-5651. DOI: 10.1038/s41596-021-00628-9.
26. Benkert P, Tosatto SC, Schomburg D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins. 2008; 71(1): 261-77. DOI: 10.1002/prot.21715.
27. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003; 31(13):3784-8. DOI: 10.1093/nar/gkg563.
28. Forrester SJ, Kawata K, Lee H, Kim JS, Sebzda K, Butler T, Yingling VR, Park JY. Bioinformatic identification of connective tissue growth factor as an osteogenic protein within skeletal muscle. Physiol Rep. 2014; 2(12): e12255. DOI: 10.14814/phy2.12255.
29. Rawal K, Sinha R, Abbasi BA, Chaudhary A, Nath SK, Kumari P, Preeti P, Saraf D, Singh S, Mishra K, Gupta P, Mishra A, Sharma T, Gupta S, Singh P, Sood S, Subramani P, Dubey AK, Strych U, Hotez PJ, Bottazzi ME. Identification of vaccine targets in pathogens and design of a vaccine using computational approaches. Sci Rep. 2021; 11(1): 17626. DOI: 10.1038/s41598-021-96863-x.
30. Rahbar MR, Mubarak SMH, Hessami A, Khalesi B, Pourzardosht N, Khalili S, Zanoos KA, Jahangiri A. A unique antigen against SARS-CoV-2, Acinetobacter baumannii, and Pseudomonas aeruginosa. Sci Rep. 2022; 12(1): 10852. DOI: 10.1038/s41598-022-14877-5.
31. Chukwudozie OS, Gray CM, Fagbayi TA, Chukwuanukwu RC, Oyebanji VO, Bankole TT, Adewole RA, Daniel EM. Immuno-informatics design of a multimeric epitope peptide based vaccine targeting SARS-CoV-2 spike glycoprotein. PLoS One. 2021; 16(3): e0248061. DOI: 10.1371/journal.pone.0248061.
32. Stranzl T, Larsen MV, Lundegaard C, Nielsen M. NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics. 2010; 62(6): 357-68. DOI: 10.1007/s00251-010-0441-4.
33. Wood KJ, Issa F, Hester J. Understanding Stem Cell Immunogenicity in Therapeutic Applications. Trends Immunol. 2016; 37(1): 5-16. DOI: 10.1016/j.it.2015.11.005.
34. Tambur AR. HLA-Epitope Matching or Eplet Risk Stratification: The Devil Is in the Details. Front Immunol. 2018; 9: 2010. DOI: 10.3389/fimmu.2018.02010.
35. Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10): 1357-69. DOI: 10.1016/j.addr.2012.09.039.
36. Li H, Ning P, Lin Z, Liang W, Kang K, He L, Zhang Y. Co-expression of the C-terminal domain of Yersinia enterocolitica invasin enhances the efficacy of classical swine-fever-vectored vaccine based on human adenovirus. J Biosci. 2015; 40(1): 79-90. DOI: 10.1007/s12038-014-9495-z.
37. Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10): 1357-69. DOI: 10.1016/j.addr.2012.09.039.
38. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007; 35(Web Server issue): W407-10. DOI: 10.1093/nar/gkm290.
39. Chukwudozie OS, Gray CM, Fagbayi TA, Chukwuanukwu RC, Oyebanji VO, Bankole TT, Adewole RA, Daniel EM. Immuno-informatics design of a multimeric epitope peptide based vaccine targeting SARS-CoV-2 spike glycoprotein. PLoS One. 2021; 16(3): e0248061. DOI: 10.1371/journal.pone.0248061.
40. Gamage DG, Gunaratne A, Periyannan GR, Russell TG. Applicability of Instability Index for In vitro Protein Stability Prediction. Protein Pept Lett. 2019; 26(5): 339-347. DOI: 10.2174/0929866526666190228144219.
41. Magwanga RO, Lu P, Kirungu JN, Dong Q, Cai X, Zhou Z, Wang X, Hou Y, Xu Y, Peng R, Agong SG, Wang K, Fang L. Knockdown of Cytochrome P450 Genes Gh_D07G1197 and Gh_A13G2057 on Chromosomes D07 and A13 Reveals Their Putative Role in Enhancing Drought and Salt Stress Tolerance in Gossypium hirsutum. Genes (Basel). 2019; 10(3): 226. DOI: 10.3390/genes10030226.
42. Gil ML, Gozalbo D. About the role of TLR2 and TLR4 in cytokine secretion by murine macrophages in response to Candida albicans. FEMS Immunol Med Microbiol. 2006; 46(1): 1-2. DOI: 10.1111/j.1574-695X.2005.00018.x.
43. Dominguez C, Boelens R, Bonvin AM. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003; 125(7): 1731-7. DOI: 10.1021/ja026939x.
44. Ramírez D, Caballero J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules. 2018; 23(5): 1038. DOI: 10.3390/molecules23051038.
45. Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011; 27(3): 343-50. DOI: 10.1093/bioinformatics/btq662.