Author(s): Deepali Wanode, Pramod Khedekar

Email(s): dipwanode@gmail.com

DOI: 10.52711/0974-360X.2026.00137   

Address: Deepali Wanode*, Pramod Khedekar
Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India.
*Corresponding Author

Published In:   Volume - 19,      Issue - 2,     Year - 2026


ABSTRACT:
This review offers an overview of how artificial intelligence (AI) is advancing and expediting the drug discovery process. AI methods utilize large data from different databases like PubChem, ChEMBL, DrugBank, ZINC, SIDER, and COCONUT, offering critical insights into chemical compounds and drug-target interactions. These datasets, enriched with experimental and high-throughput screening data, are used to create predictive models for various drug development stages. AI techniques such as deep learning (DL), machine learning (ML), and natural language processing (NLP) are proving valuable in tasks like virtual screening, de novo drug design, target identification, and toxicity prediction. Data representations like SMILES, SELFIES, InChI, and DeepSMILES are used to model chemical structures effectively. Furthermore, advanced AI models such as generative adversarial networks (GANs), Recurrent neural network (RNN) and graph neural networks (GNNs) are enhancing drug discovery by creating novel molecular structures and predicting complex molecular interactions. AI is revolutionizing drug discovery, enabling faster, more efficient, and more accurate development of new therapies.


Cite this article:
Deepali Wanode, Pramod Khedekar. Artificial Intelligence: A Modern Approach towards Drug Discovery. Research Journal of Pharmacy and Technology. 2026;19(2):970-8. doi: 10.52711/0974-360X.2026.00137

Cite(Electronic):
Deepali Wanode, Pramod Khedekar. Artificial Intelligence: A Modern Approach towards Drug Discovery. Research Journal of Pharmacy and Technology. 2026;19(2):970-8. doi: 10.52711/0974-360X.2026.00137   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-66


REFERENCES 
1.    Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discovery Today. 2021; 26: 80–93. https://doi.org/10.1016/j.drudis.2020.10.010 
2.    Krosuri P, Prasuna GG. Artificial intelligence in drug discovery. Journal of Xidian University. 2023; 17(9): 734-753. http://xadzkjdx.cn/ 
3.    Deng J, Johnson J, Yang Z. Artificial Intelligence in Drug Discovery: Applications and Techniques. 2021. http://dx.doi.org/10.48550/arXiv.2106.05386
4.    Naman S, Sharma S, Baldi A. Reinventing Spice Authentication: Merging Artificial Intelligence Insights with Traditional Methods for Authentication of Cardamom. Res J Pharm Technol. 2024; 17(10): 4907-4. 
5.    Garza-Ulloa J. Artificial Intelligence: Predictive vs Generative vs New Mixing AI. Am J Biomed Sci and Res. 2024; 22(3): 491-500. www.biomedgrid.com 
6.    Sharma VK, Bharatam PV. Artificial Intelligence in Drug Discovery (AIDD). Current Research and Information on Pharmaceutical Sciences. 2022; 16(1): 3-7.
7.    Zaeri N. Drug discovery for COVID-19 and related mutations using artificial intelligence. Res J Pharm Technol. 2023; 16(11): 5384–91.
8.    Meenakshi K, Maragatham G. Computational intelligence in diagnosis and prognosis of gestational diabetes using deep learning. Res J Pharm Technol. 2019;12(8):3891–5.
9.    Rehman AU, Li M, Wu B, Ali Y, Rasheed S, Shaheen S, et al. Role of Artificial Intelligence in Revolutionizing Drug Discovery. Fundamental Research. 2024. https://doi.org/10.1016/j.fmre.2024.04.021 
10.    Mishra DK, Awasthi H. Artificial Intelligence: A New Era in Drug Discovery. Asian Journal of Pharmaceutical Research and Development. 2021; 9(5): 87–92. http://dx.doi.org/10.22270/ajprd.v9i5995 
11.    Tabana Y, Babu D, Fahlman R, Siraki AG, Barakat K. Target identification of small molecules: an overview of the current applications in drug discovery. BMC Biotechnology. 2023; 23: 44.
12.    Ha J, Park H, Park J, Park SB. Recent advances in identifying protein targets in drug discovery. Cell Chemical Biology. 2021; 28: 394–423.
13.    Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics. 2023; 15: 1916.
14.    Visan AI, Negut I. Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. Life. 2024; 14: 233.
15.    Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, et al. PubChem 2023 update. Nucleic Acids Res. 2023; 51: D1373-D1380.
16.    Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012 Jan; 40: D1100-7.
17.    Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu  A, Grant JR, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research. 2018; 46: D1074–D1082. https://doi.org/10.1093/nar/gkx1037
18.    Irwin JJ, Sterling T, Mysinger MM, et al. ZINC: a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2012; 52(7): 1757-68.
19.    Chen, J., Swamidass, S. J., Dou, Y., Bruand, J., and Baldi, P. ChemDB: A Public Database of Small Molecules and Related Chemoinformatics Resources. Bioinformatics. 2005: 21(22): 4133–4139. https://doi.org/10.1093/bioinformatics/bti671
20.    Yamanishi Y, Araki M, Gutteridge A, et al. Drug Target Commons (DTC): a unified knowledgebase of drug targets and drug-target interactions. Nucleic Acids Res. 2011; 39: D1046-52.
21.    Sorokina, M., and Steinbeck, C. COCONUT: The collection of Open Natural products. Journal of Cheminformatics. 2020; 12(1): 20. https://doi.org/10.1186/s13321-020-00424-9
22.    Yang JJ, Chen Y, Suzek TO, et al. DGIdb: a database for genomic interactions with drugs and chemicals. Nucleic Acids Res. 2013; 41: D1069-75.
23.    Srivastava R, Srivastava A, Kumar N. INPUT: Integrated Network for Proteins, Universes, and Targets for Systems Biology and Drug Target Identification. Database. 2014. https://doi.org/10.1093/database/bau092
24.    Kuhn M, Letunic I, Jensen LJ, Bork P. The SIDER Database of Drugs and Side Effects. Nucleic Acids Research, 2016; 44: D1075–D1079. https://doi.org/10.1093/nar/gkv1075
25.    Kuhn M, Szklarczyk D, Franceschini A, et al. STITCH 4: improved prediction of protein-chemical interactions with increased coverage and reliability. Nucleic Acids Res. 2014; 42: D339-46.
26.    Varadi, M., Anyango, S., Deshpande, M., et al. (). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 2022; 50: D439–D444. https://doi.org/10.1093/nar/gkab1061 
27.    David L, Thakkar A, Mercado R, Engkvist O. Molecular representations in AI-driven drug discovery: a review and practical guide. J Cheminform. 2020; 12: 56.
28.    O’Boyle NM. Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI. J Cheminform. 2012; 4: 22. https://doi.org/10.1186/1758-2946-4-22  
29.    Krenn M, Ai Q, Barthel S, Carson N, Frei A, Frey NC, et al. SELFIES and the future of molecular string representations. Patterns. Cell Press; 2022; 3(10): 100588. 
30.    Yuksel A, Ulusoy E, Unlu A, Dogan T. SELFormer: molecular representation learning via SELFIES language models. Mach Learn Sci Technol. 2023; 4(2): 025035.
31.    Kosonocky CW, Feller AL, Wilke CO, and Ellington AD. Using alternative SMILES representations to identify novel functional analogues in chemical similarity vector searches. Patterns. 2023; 4: 100865. 
32.    Cheng AH, Cai A, Miret S, Malkomes G, Phielipp M, Aspuru-Guzik A. Group SELFIES: a robust fragment-based molecular string representation. Digital Discovery. 2023; 2(3): 748–58. 
33.    O’Boyle NM, Dalke A. DeepSMILES: An adaptation of SMILES for use in machine-learning of chemical structures. Theoretical and Computational Chemistry. 2018. https://doi.org/10.26434/chemrxiv.7097960.v1  
34.    Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D. InChI, the IUPAC International Chemical Identifier. J Cheminform. 2015; 7: 23. https://doi.org/10.1186/s13321-015-0068-4  
35.    Pletnev I, Erin A, McNaught A, Blinov K, Tchekhovskoi D, Heller S. InChIKey collision resistance: An experimental testing. J Cheminform. 2012; 4: 29 
36.    Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nature Reviews Drug Discovery. 2019; 18: 463–77. 
37.    Ajay I. Patel, Pooja K. Khunti, Amit J. Vyas, Ashok B. Patel. Explicating Artificial Intelligence: Applications in Medicine and Pharmacy. Asian Journal of Pharmacy and Technology; 2022; 12(4): 401-6.
38.    Chen W, Liu X, Zhang S, Chen S. Artificial intelligence for drug discovery: Resources, methods, and applications. Molecular Therapy Nucleic Acids. 2023; 31: 691–702.
39.    Sarker IH. AI Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems. SN Computer Science. 2022; 3: 158.
40.    Sanjay S. Patel, Sparsh A. Shah. Artificial Intelligence: Comprehensive Overview and its Pharma Application. Asian Journal of Pharmacy and Technology. 2022; 12(4): 337-8.
41.    Patel K, Nand K, Student P. Artificial Intelligence and its Models Artificial Intelligence Journal of Applied Science and Computations. 2020; VII(II): 95-97. https://www.researchgate.net/publication/339472454 
42.    Rojanala R. Algorithms, Models and Applications of Artificial Intelligence. International Journal of Scientific Research in Computer Science Engineering and Information Technology. 2019; 5(4): 2456-3307.
43.    Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, et al. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics. 2024; 16(10): 1328. 
44.    Holey VS, Baitule AW. A Wide Application of Artificial Intelligence in Pharma Field. Asian Journal of Pharmaceutical Research. 2024; 14(4): 403-0.
45.    Patil P, Nrip NK, Hajare A, Hajare D, Patil MK, Kanthe R, et al. Artificial Intelligence and Tools in Pharmaceuticals: An Overview. Res J Pharm Technol. 2023; 16(4): 2075–82. 
46.    Bairagi A, Singhai AK, Jain A. Artificial Intelligence: Future Aspects in the Pharmaceutical Industry an Overview. Asian Journal of Pharmacy and Technology. 2024; 14(3): 237-6.
47.    R. R. Kulkarni, P. S. Pawar. Artificial Intelligence in Pharmacy. Asian Journal of Pharmacy and Technology. 2023; 13(4): 304-6.
48.    Fatima MJ, Parthiban C. Artificial Intelligence [AI] -The Game Changer in Pharmaceutical Industry. Asian Journal of Pharmacy and Technology. 2024. 
49.    Abbas MKG, Rassam A, Karamshahi F, Abunora R, Abouseada M. The Role of AI in Drug Discovery. ChemBioChem. John Wiley and Sons Inc; 2024; 25(14): e202300816. https://doi.org/10.1002/cbic.202300816 
50.    Prusty A, Panda SK. The Revolutionary Role of Artificial Intelligence (AI) in Pharmaceutical Sciences. Indian Journal of Pharmaceutical Education and Research. 2024; 58: s768–76. 
51.    Mak KK, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discovery Today. 2019; 24: 773–80. 
52.    Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discovery Today. 2021; 26: 80–93. 
53.    Adnan R. Ahmad. Chemical Reaction Prediction using Machine Learning. Research Journal of Pharmacy and Technology. 2024; 17(11): 5435-8. doi: 10.52711/0974-360X.2024.00831 
54.    Farghali H, Kutinová Canová N, Arora M. The Potential Applications of Artificial Intelligence in Drug Discovery and Development. Physiol. Res. 2021; 70(4): S715-S722,.
55.    Nasnodkar S. Cinar B, Ness S. Artificial Intelligence in Toxicology and Pharmacology. Journal of Engineering Research and Reports. 2023; 25(7): 192-206.
56.    Tran TTV, Surya Wibowo A, Tayara H, Chong KT. Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives. J Chem Inf Model. 2023; 63(9): 2628-2643. 
57.    Sudhaar P, SelvaPreethi S, Anjali G Artificial Intelligence in Clinical Trials- Future Prospectives. Bioequiv and Bioavailab. Int J. 2023; 7(1): 000196.
58.    Meenakshi K, Maragatham G. Computational Intelligence in Diagnosis and Prognosis of Gestational Diabetes using Deep Learning. Research J. Pharm. and Tech. 2019; 12(8): 3891-3895. doi: 10.5958/0974-360X.2019.00669.3
59.    Bora SJ, Chakravorty R, Gupta PD. The use of Artificial Intelligence in Pharmacy. Asian Journal of Pharmacy and Technology. 2023; 13(3): 229-4.
60.    Ingale S, Shrisunder N, Gophane G, Birajdar A. Ascent of Artificial Intelligence (AI) in Pharmacy. International Journal of Technology. 2024; 14(1): 54-8.
61.    Khirfan R, Kotb H, Atiyeh H. Utilizing Artificial Intelligence to Improve Patient Safety: Innovations, Obstacles, and Future Paths. Research Journal of Pharmacy and Technology. 2024; 17(9): 4630-6. 
62.    Mahajan BS, Mahale BSP, Pawar AR, Patil VV, Patil PS, Songire J. A Review on Artificial Intelligence in Pharmacy. Research Journal of Science and Technology. 2024; 16(2): 129-6. 
63.    Lakshmidevi Sigatapu, S. Sundar, K. Padmalatha, Sravya. K, D. Ooha, P. Uha Devi. Artificial Intelligence in Healthcare- An Overview. Asian Journal of Pharmacy and Technology. 2023; 13(3): 218-2.
64.    Tahilani P, Swami H, Goyanar G, Tiwari S. The Era of Artificial Intelligence in Pharmaceutical Industries - A Review. Research Journal of Science and Technology. 2022; 14(3): 183-7.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available