Author(s):
Ankita Banik, Sourav Chatterjee, Rumpa Banerjee, Sinjini Das
Email(s):
sinjini.here@gmail.com
DOI:
10.52711/0974-360X.2026.00136
Address:
Ankita Banik1, Sourav Chatterjee2, Rumpa Banerjee1, Sinjini Das1*
1Pharmacy, Eminent College of Pharmaceutical Technology, West Bengal, India.
2Pharmacy, M.R. College of Pharmaceutical Sciences and Research, West Bengal, India.
*Corresponding Author
Published In:
Volume - 19,
Issue - 2,
Year - 2026
ABSTRACT:
ABSTRACT:
Globally, the prevalence of diabetes and obsessive disorders associated with persistent hyperglycaemia is rising. The most common cause of vision loss among them is diabetic retinopathy (DR), which seriously impairs the structure and function of the retinal and choroidal capillary networks. This work was done by extensive reviewing of different articles obtained by using specific keywords in various types of search engines. Around 154 references were reviewed thoroughly to produce the result. The therapy and administration of pathologic ocular neovascularization in the posterior region of eye in DR is a difficult venture because of the barrier’s anatomy and physiology in the eye. Anti-angiogenic and anti-inflammatory medications are used as current therapy; these medications are invasive and repeated intraocular injections that have a high risk of side effects. Our review work showcased latest advancements in nano carrier-based strategies (polymeric, liposomes, dendrimers, lipid nanoparticles), as well as their benefits for targeting the tissue present in eyes. The review included enough details to allow other researchers to benefit from it in designing nano medicines for the management of diabetic retinopathy and an insight on the properties of the different materials tested unambiguously for this purpose.
Cite this article:
Ankita Banik, Sourav Chatterjee, Rumpa Banerjee, Sinjini Das. A Consecutive Nano-carrier Based Approach for the Management of Diabetic Retinopathy (DR): An Overview. Research Journal of Pharmacy and Technology. 2026;19(2):961-9. doi: 10.52711/0974-360X.2026.00136
Cite(Electronic):
Ankita Banik, Sourav Chatterjee, Rumpa Banerjee, Sinjini Das. A Consecutive Nano-carrier Based Approach for the Management of Diabetic Retinopathy (DR): An Overview. Research Journal of Pharmacy and Technology. 2026;19(2):961-9. doi: 10.52711/0974-360X.2026.00136 Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-65
REFERENCES:
1. Center for Disease and Control Prevention. Diabetes. https://www.cdc.gov/diabetes/basics/diabetes.html (accessed on 11 October 2021).
2. Alghadyan AA. Diabetic retinopathy–An update. Saudi Journal of Ophthalmology. 2011; 25(2): 99-111.
3. Tarr JM, Kaul K, Wolanska K, Kohner EM, Chibber R (2013). Retinopathy in diabetes. Diabetes: An Old Disease, a New Insight 88-106.
2. Chopdar A, Chakravarthy U, Verma D (2003). Age related macular degeneration. Bmj 326(7387): 485-8.488.
3. Bhagat N, Zarbin MA (2019). Epidemiology, risk factors, and pathophysiology of diabetic retinopathy. Clinical Strategies in the Management of Diabetic Retinopathy: A step-by-step Guide for Ophthalmologists 1-9.
4. Ackland P, Resnikoff S, Bourne R. World blindness and visual impairment: Despite Many Successes, the problem is growing. Community Eye Health. 2017; 30(100): 71.
5. Mahaling B, Srinivasarao DA, Raghu G, Kasam RK, Reddy GB, Katti DS. A non-invasive nanoparticle mediated delivery of triamcinolone acetonide ameliorates diabetic retinopathy in rats. Nanoscale. 2018; 10(35): 16485-98.
6. Barar J, Aghanejad A, Fathi M, Omidi Y. Advanced Drug Delivery and Targeting Technologies for the Ocular Diseases. BioImpacts: BI. 2016; 6(1): 49.
7. Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systematic review. JAMA. 2007; 298(8): 902-16.
8. National institute for health and care excellence (NICE CKS) (2015). Diabetes - type 2.
9. Cheung N, Mitchell P, Wong TY. Diabetic Retinopathy. Lancet. 2010; 376: 124–136.
10. Diabetic Retinopathy Vitrectomy Study Research Group. Early vitrectomy for severe proliferative diabetic retinopathy in eyes with useful vision: results of a randomized trial—Diabetic Retinopathy Vitrectomy Study report 3. Ophthalmology. 1988; 95(10): 1307-20.
11. Sasaki H, Kawamura N, Dyck PJ, Dyck PJ, Kihara M, Low PA. Spectrum of diabetic neuropathies. Diabetol Int. 2020; 11 (2): 87–96.
12. Gonçalves NP, Vægter CB, Andersen H, Østergaard L, Calcutt NA, Jensen TS. Schwann cell Interactions with axons and Microvessels in Diabetic Neuropathy. Nature Reviews Neurology. 2017; 3: 135-47.
13. Gadekallu TR, Khare N, Bhattacharya S, Singh S, Maddikunta PK, Ra IH, Alazab M. Early detection of diabetic retinopathy using PCA-firefly based deep learning model. Electronics. 2020; 9(2): 274.
14. Jensen TS, Karlsson P, Gylfadottir SS, Andersen ST, Bennett DL, Tankisi H, Finnerup NB, Terkelsen AJ, Khan K, Themistocleous AC, Kristensen AG. Painful and non-painful diabetic neuropathy, diagnostic challenges and implications for future management. Brain. 2021; 144(6): 1632-45.
15. Todorovic SM. Painful diabetic neuropathy: prevention or suppression?. International Review of Neurobiology. 2016; 127: 211-25.
16. Selvaraj K, Gowthamarajan K, Karri VV, Barauah UK, Ravisankar V, Jojo GM. Current treatment strategies and nanocarrier based approaches for the treatment and management of diabetic retinopathy. Journal of Drug Targeting 2017; 25(5): 386-405.
17. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Research and Clinical Practice. 2019; 157: 107843.
18. Cheung N, Mitchell P, Wong T.Y. Diabetic retinopathy. Lancet. 2010; 376: 124-136.
19. Leasher JL, Bourne RR, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, Pesudovs K, Price H, White RA, Wong TY, Resnikoff S. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990; to 2010. Diabetes Care. 2016; 39(9): 1643-9.
20. Baudouin C, Labbé A, Liang H, Pauly A, Brignole-Baudouin F. Preservatives in eyedrops: the good, the bad and the ugly. Progress in Retinal and Eye Research. 2010; 29(4): 312-34.
21. Adelman RA, Zheng Q, Mayer HR. Persistent ocular hypertension following intravitreal bevacizumab and ranibizumab injections. Journal of Ocular Pharmacology and Therapeutics. 2010; 26(1): 105-10.
22. Krishnan R, Goverdhan S, Lochhead J. Submacular haemorrhage after intravitreal bevacizumab compared with intravitreal ranibizumab in large occult choroidal neovascularization. Clinical and Experimental Ophthalmology 2009; 37(4): 384-8.
23. Cabrera FJ, Wang DC, Reddy K, Acharya G, Shin CS. Challenges and opportunities for drug delivery to the posterior of the eye. Drug Discovery Today. 2019; 24(8): 1679-84.
24. Koyama R, Nakanishi T, Ikeda T, Shimizu A. Catalogue of soluble proteins in human vitreous humor by one-dimensional sodium dodecyl sulfate–polyacrylamide gel electrophoresis and electrospray ionization mass spectrometry including seven angiogenesis-regulating factors. Journal of Chromatography B. 2003; 792(1): 5-21.
25. Lu Y, Zhou N, Huang X, Cheng JW, Li FQ, Wei RL, Cai JP. Effect of intravitreal injection of bevacizumab-chitosan nanoparticles on retina of diabetic rats. International Journal of Ophthalmology. 2014; 7(1):1.
26. Oh EJ, Choi JS, Kim H, Joo CK, Hahn SK (). Anti-Flt1 peptide–hyaluronate conjugate for the Treatment of Retinal Neovascularization and Diabetic Retinopathy. Biomaterials 2011; 32(11): 3115-23.
27. Qiu F, Meng T, Chen Q, Zhou K, Shao Y, Matlock G, Ma X, Wu W, Du Y, Wang X, Deng G. Fenofibrate-loaded Biodegradable Nanoparticles for the Treatment of Experimental Diabetic Retinopathy and Neovascular Age-related Macular Degeneration. Molecular Pharmaceutics. 2019; 16(5): 1958-70.
28. Chen XR, Besson VC, Palmier B, Garcia Y, Plotkine M, Marchand-Leroux C. Neurological recovery-promoting, Anti-inflammatory, and Anti-oxidative Effects Afforded by Fenofibrate, a PPAR Alpha agonist, in Traumatic Brain Injury. Journal of Neurotrauma. 2007; 24(7): 1119-31.
29. Laddha UD, Kshirsagar SJ. Formulation of PPAR-gamma agonist as surface modified PLGA Nanoparticles for Non-Invasive Treatment of Diabetic Retinopathy: In vitro and In vivo evidences. Heliyon. 2020; 6(8).
30. Mahaling B, Katti DS. Physicochemical properties of core–shell type nanoparticles govern their spatiotemporal biodistribution in the eye. Nanomedicine: Nanotechnology, Biology and Medicine 2016; 12(7): 2149-60.
31. Parodi A, Buzaeva P, Nigovora D, Baldin A, Kostyushev D, Chulanov V, Savvateeva LV, Zamyatnin AA. Nanomedicine for Increasing the Oral Bioavailability of Cancer Treatments. Journal of Nanobiotechnology. 2021; 19:1-9.
32. Kim M, Park JH, Jeong H, Hong J, Choi W.S., Lee BH, Park CY. An evaluation of the in vivo safety of nonporous silica nanoparticles: Ocular Topical Administration Versus Oral Administration. Sci. Rep. 2017; 7: 1–8.
33. Jo DH, Kim JH, Yu YS, Lee TG, Kim JH. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine: Nanotechnology, Biology and Medicine. 2012; 8(5): 784-91.
34. Paiva MR, Andrade GF, Dourado LF, Castro BF, Fialho SL, Sousa EM, Silva-Cunha A. Surface functionalized mesoporous silica nanoparticles for intravitreal application of tacrolimus. Journal of Biomaterials Applications. 2021; 35(8): 1019-33.
35. BarathManiKanth, S.; Kalishwaralal, K.; Sriram, M.; Pandian, S.R.K.; Youn, H.-S.; Eom, S.; Gurunathan, S. Anti-oxidant Effect of Gold Nanoparticles Restrains Hyperglycemic Conditions in Diabetic Mice. J. Nanobiotechnology. 2010; 8: 1–15.
36. Karthikeyan B, Kalishwaralal K, Sheikpranbabu S, Deepak V, Haribalaganesh R, Gurunathan S. Gold nanoparticles downregulate VEGF-and IL-1β-induced cell Proliferation Through Src Kinase in Retinal Pigment Epithelial cells. Experimental Eye Research. 2010; 91(5): 769-78.
37. Apaolaza PS, Busch M, Asin-Prieto E, Peynshaert K, Rathod R, Remaut K, Dünker N, Göpferich A. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the Surface Properties and Effect on their Distribution. Experimental Eye Research. 2020; 198: 108151.
38. Dave V, Sharma R, Gupta C, Sur S. Folic Acid Modified Gold Nanoparticle for Targeted Delivery of Sorafenib Tosylate Towards the Treatment of Diabetic Retinopathy. Colloids and Surfaces B: Biointerfaces. 2020; 194: 111151.
39. Sheikpranbabu S, Kalishwaralal K, Venkataraman D, Eom SH, Park J, Gurunathan S. Silver nanoparticles inhibit VEGF-and IL-1β-induced Vascular Permeability via Src Dependent Pathway in Porcine Retinal Endothelial cells. Journal of Nanobiotechnology. 2009; 7:1-2.
40. Amato R, Giannaccini M, Dal Monte M, Cammalleri M, Pini A, Raffa V, Lulli M, Casini G. Association of the somatostatin analog octreotide with magnetic nanoparticles for intraocular delivery: a possible approach for the treatment of diabetic retinopathy. Frontiers in Bioengineering and Biotechnology. 2020; 8: 144.
41. O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nature reviews Molecular Cell Biology. 2020; 21(10): 585-606.
42. Kostyushev D, Kostyusheva A, Brezgin S, Smirnov V, Volchkova E, Lukashev A, Chulanov V. Gene editing by extracellular vesicles. International Journal of Molecular Sciences. 2020; 21(19): 7362.
43. Yamashita T, Takahashi Y, Takakura Y. Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biological and Pharmaceutical Bulletin. 2018; 41(6): 835-42.
44. Platania CB, Maisto R, Trotta MC, D'Amico M, Rossi S, Gesualdo C, D'Amico G, Balta C, Herman H, Hermenean A, Ferraraccio F. Retinal and circulating mi RNA expression patterns in diabetic retinopathy: An In silico and In vivo Approach. British Journal of Pharmacology. 2019; 176(13):2179-94.
45. Afarid M, Namvar E, Sanie-Jahromi F. Diabetic Retinopathy and BDNF: A Review on its Molecular Basis and Clinical Applications. Journal of Ophthalmology. 2020; 2020(1): 1602739.
46. Li W, Jin L, Cui Y, Nie A, Xie N, Liang G. Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression. Journal of Endocrinological Investigation. 2021; 44: 1193-207.
47. Safwat A, Sabry D, Ragiae A, Amer E, Mahmoud RH, Shamardan RM. Adipose mesenchymal stem cells–derived exosomes attenuate retina degeneration of streptozotocin-induced diabetes in rabbits. Journal of Circulating Biomarkers. 2018; 7: 1849454418807827.
48. Gu S, Liu Y, Zou J, Wang W, Wei T, Wang X, Zhu L, Zhang M, Zhu J, Xie T, Yao Y. Retinal pigment epithelial cells secrete miR-202-5p-containing exosomes to protect against proliferative diabetic retinopathy. Experimental Eye Research. 2020; 201: 108271.
49. Gu C, Zhang H, Gao Y. Adipose mesenchymal stem cells‐secreted extracellular vesicles containing microRNA‐192 delays diabetic retinopathy by targeting ITGA1. Journal of Cellular Physiology. 2021; 236(7): 5036-51.
50. Deng CL, Hu CB, Ling ST, Zhao N, Bao LH, Zhou F, Xiong YC, Chen T, Sui BD, Yu XR, Hu CH. Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration. Cell Death and Differentiation. 2021; 28(3): 1041-61.
51. Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Investigative Ophthalmology and Visual Science. 2019; 60(1):294-303.
52. Kamalden TA, Macgregor-Das AM, Kannan SM, Dunkerly-Eyring B, Khaliddin N, Xu Z, Fusco AP, Yazib SA, Chow RC, Duh EJ, Halushka MK. Exosomal microRNA-15a transfer from the pancreas augments diabetic complications by inducing oxidative stress. Antioxidants and Redox Signaling. 2017; 27(13): 913-30.
53. Cao X, Xue LD, Di Y, Li T, Tian YJ, Song Y. MSC-derived exosomal lncRNA SNHG7 suppresses endothelial-mesenchymal transition and tube formation in diabetic retinopathy via miR-34a-5p/XBP1 axis. Life Sciences. 2021; 272:119232.
54. Li J, Wang JJ, Zhang SX. Preconditioning with endoplasmic reticulum stress mitigates retinal endothelial inflammation via activation of X-box binding protein 1. Journal of Biological Chemistry. 2011; 286(6): 4912-21.
55. Ye L, Guo H, Wang Y, Peng Y, Zhang Y, Li S, Yang M, Wang L. Exosomal circEhmt1 released from hypoxia‐pretreated pericytes regulates high glucose‐induced microvascular dysfunction via the NFIA/NLRP3 pathway. Oxidative Medicine and Cellular Longevity. 2021; 2021(1): 8833098.
56. Borodina T, Kostyushev D, Zamyatnin Jr AA, Parodi A. Nanomedicine for treating diabetic retinopathy vascular degeneration. International Journal of Translational Medicine. 2021; 1(3): 306-22.
57. Munir M, Zaman M, Waqar MA, Khan MA, Alvi MN. Solid lipid nanoparticles: a versatile approach for controlled release and targeted drug delivery. Journal of Liposome Research. 2024; 34(2): 335-48.
58. Souto EB, Doktorovova S, Gonzalez-Mira E, Egea MA, Garcia ML. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Current Eye Research. 2010; 35(7): 537-52.
59. Gasco M, Saettone M, Zara G, inventors; Gasco Maria R, Saettone Marco F, Zara Gian P, assignee. Pharmaceutical Compositions Suitable for the Treatment of Ophthalmic Diseases. United States patent application US 10/533,512. 2006 Feb 2.
60. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Advanced Pharmaceutical Bulletin. 2015; 5(3): 305.
61. Fangueiro JF, Andreani T, Fernandes L, Garcia ML, Egea MA, Silva AM, Souto EB. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids and Surfaces B: Biointerfaces. 2014; 123: 452-60.
62. Fangueiro JF, Andreani T, Egea MA, Garcia ML, Souto SB, Souto EB. Experimental factorial design applied to mucoadhesive lipid nanoparticles via multiple emulsion process. Colloids and surfaces B: Biointerfaces. 2012; 100: 84-9.
63. Fangueiro JF, Calpena AC, Clares B, Andreani T, Egea MA, Veiga FJ, Garcia ML, Silva AM, Souto EB. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies. International Journal of Pharmaceutics. 2016; 502(1-2): 161-9.
64. Li J, Guo X, Liu Z, Okeke CI, Li N, Zhao H, Aggrey MO, Pan W, Wu T. Preparation and evaluation of charged solid lipid nanoparticles of tetrandrine for ocular drug delivery system: pharmacokinetics, cytotoxicity and cellular uptake studies. Drug Development and Industrial Pharmacy. 2014; 40(7): 980-7.
65. Guo L, Zhang X, Zhang S. An experimental study of inhibition of tetrandrine on posterior capsular opacification in rabbits. [Zhonghua yan ke za Zhi] Chinese Journal of Ophthalmology. 2002; 38(4): 235-8.
66. Huang P, Xu Y, Wei R, Li H, Tang Y, Liu J, Zhang SS, Zhang C. Efficacy of Tetrandrine on Lowering Intraocular Pressure in Animal Model with Ocular Hypertension. Journal of Glaucoma. 2011; 1; 20(3): 183-8.
67. Ana RD, Fonseca J, Karczewski J, Silva AM, Zielińska A, Souto EB. Lipid-based nanoparticulate systems for the ocular delivery of bioactives with anti-inflammatory properties. International Journal of Molecular Sciences. 2022; 23(20): 12102.
68. Rajabi M, Srinivasan M, Mousa SA. Nanobiomaterials in drug delivery. InNanobiomaterials in Drug Delivery. 2016; 1-37. William Andrew Publishing.
69. Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. Aaps Pharmscitech. 2011; 12: 62-76.
70. Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Development and Industrial Pharmacy. 2013; 39(4): 508-19.
71. Liu R, Liu Z, Zhang C, Zhang B. Nanostructured lipid carriers as novel ophthalmic delivery system for mangiferin: Improving in vivo Ocular Bioavailability. Journal of Pharmaceutical Sciences. 2012; 101(10): 3833-44.
72. Joubert E, Richards ES, Merwe JD, De Beer D, Manley M, Gelderblom WC. Effect of species variation and processing on phenolic composition and in vitro antioxidant activity of aqueous extracts of Cyclopia spp.(honeybush tea). Journal of Agricultural and Food Chemistry. 2008; 56(3): 954-63.
73. Jonas JB, Degenring RF, Kreissig I, Akkoyun I, Kamppeter BA. Intraocular pressure elevation after intravitreal triamcinolone acetonide injection. Ophthalmology. 2005; 112(4): 593-8.
74. Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artificial cells, Nanomedicine, and Biotechnology. 2016; 44(1): 27-40.
75. Vandamme TF, Brobeck L. Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. Journal of Controlled Release. 2005; 102(1): 23-38.
76. Kalomiraki M, Thermos K, Chaniotakis NA. Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. International Journal of Nanomedicine. 2016; 1-2.
77. Yavuz B, Pehlivan SB, Vural İ, Ünlü N. In vitro/in vivo evaluation of dexamethasone—PAMAM Dendrimer Complexes for Retinal Drug Delivery. Journal of Pharmaceutical Sciences. 2015; 104(11): 3814-23.
78. Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. Journal of Pharmacy and Bioallied Sciences. 2014; 6(3): 139-50.
79. Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC. Applications and limitations of dendrimers in biomedicine. Molecules. 2020; 25(17): 3982.
80. Abrishami M, Ganavati SZ, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina. 2009; 29(5): 699-703.
81. Mishra GP, Bagui M, Tamboli V, Mitra AK. Recent applications of liposomes in ophthalmic drug delivery. Journal of Drug Delivery. 2011; 2011(1): 863734.
82. Sawant RR, Torchilin VP. Challenges in development of targeted Liposomal Therapeutics. The AAPS Journal. 2012; 303-15.
83. Zhang C, Wang J, Wu H, Fan W, Li S, Wei D, Song Z, Tao Y. Hydrogel-Based Therapy for Age-Related Macular Degeneration: Current Innovations, Impediments, and Future Perspectives. Gels. 2024; 10(3): 158.
84. Shahsuvaryan ML. Therapeutic potential of ranibizumab in corneal neovascularization. Trends in Pharmacological Sciences. 2017; 38(8): 667-8.