ABSTRACT:
This study investigates the analgesic potential of indole alkaloids, compounds derived from diverse natural sources, such as plants and fungi. Through preclinical models, our research demonstrates the efficacy of indole alkaloids in modulating neurotransmitter pathways implicated in inflammatory and neuropathic pain. The chemical diversity of these compounds serves as a promising foundation for the development of novel analgesic agents, presenting a potential breakthrough in pain management strategies. The findings shed light on the intricate mechanisms through which indole alkaloids exert their analgesic effects, contributing valuable insights to the understanding of pain modulation. The results underscore the need for further clinical investigations to validate the safety, efficacy, and tolerability of indole alkaloids in human subjects. If successful, these compounds could offer a diverse and effective addition to the existing arsenal of analgesic drugs, addressing the persistent challenge of managing pain across various clinical scenarios. In summary, the studyhighlights the substantial analgesic potential of indole alkaloids, emphasizing their chemical diversity and mechanisms of action.
Cite this article:
Swati Jain, Sukhwant Singh. Analgesics Potential of Indole Alkaloids. Research Journal of Pharmacy and Technology. 2026;19(2):911-4. doi: 10.52711/0974-360X.2026.00129
Cite(Electronic):
Swati Jain, Sukhwant Singh. Analgesics Potential of Indole Alkaloids. Research Journal of Pharmacy and Technology. 2026;19(2):911-4. doi: 10.52711/0974-360X.2026.00129 Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-58
REFERENCES:
1. Al-Snafi AE. Medicinal plants possessed anti-inflammatory antipyretic and analgesic activities (part 2)-plant based review. Sch Acad J Pharm. 2016; 5(5): 142–58. doi:10.2174/1381612820666150115151416
2. Rao TD, Kumar MP. Analgesic efficacy of paracetamol vs ketorolac after dental extractions. Res J Pharm Technol. 2018; 11(8): 3375–9. doi:10.5958/0974-360X.2018.00155.8
3. Suryadi A, Siswodihardjo S, Widiandani T, Widyowati R. Structure modifications of pinostrobin from Temu Kunci (Boesenbergia pandurata Roxb. Schlecht) and their analgesic activity based on in silico studies. Res J Pharm Technol. 2021; 14(4): 2089–94. doi:10.5958/0974-360X.2021.01055.6
4. Gidwani BK, Bhargava S, Rao SP, Majoomdar A, Pawar DP, Alaspure RN. Analgesic, anti–inflammatory and anti–hemorrhoidal activity of aqueous extract of Lantana camara Linn. Res J Pharm Technol. 2009; 2(2): 378–81. doi:10.5958/0974-360X-2009-0032-7
5. Mirzaeian R, Sadoughi F, Tahmasebian S, Mojahedi M. The role of herbal medicines in health care quality and the related challenges. J Herb Med Pharmacol. 2021; 10(2): 156–65. doi:10.4103/jhmp.JHMP_1_21
6. Paswan SK, Srivastava S, Rao CV. Incision wound healing, anti-inflammatory and analgesic activity of Amaranthus spinosus in Wistar rats. Res J Pharm Technol. 2020; 13(5): 2439–44. doi:10.5958/0974-360X.2020.01480.8
7. Ghori SS, Khan M, Qureshi MS, Ghori SK. Analgesic and antipyretic effects of Ficus dalhouseae Miq. leaf ethanolic extract. Res J Pharm Technol. 2014; 7(9): 1014–9. doi:10.5958/0974-360X.2014.00827.4
8. Valli G, Vasanthi A, Vijayalakshmi R, Thirupathi AT. CNS depressant and analgesic activities of different extracts of Tephrosia purpurea root. Res J Pharm Technol. 2011; 4(9): 1439–42. doi:10.5958/0974-360X.2011.00940.2
9. Muthusamy P, Nivedhitha M, Jayshree N. Analgesic and anti-inflammatory activities of Datura metel Linn. root in experimental animal models. Res J Pharm Technol. 2010; 3(3): 897–9. doi:10.5958/0974-360X.2010.00346.8
10. Bachhav RS, Buchake VV, Saudagar RB. Analgesic and anti-inflammatory activities of Anthocephalus cadamba Roxb. leaves in Wistar rats. Res J Pharm Technol. 2009; 2(1): 164–7. doi:10.5958/0974-360X-2009-00044-0
11. Cain CK, Francis JM, Plone MA, Emerich DF, Lindner MD. Pain-related disability and effects of chronic morphine in the adjuvant-induced arthritis model of chronic pain. Physiol Behav. 1997; 62(1): 199–205. doi:10.1016/S0031-9384(96)00215-4
12. Xiao X, Wang X, Gui X, Chen L, Huang B. Natural flavonoids as promising analgesic candidates: A systematic review. Chem Biodivers. 2016; 13: 1427–40. doi:10.1002/cbdv.201600014
13. Singh SS, Pandey SC, Srivastava S, Gupta VS, Patro B, Ghosh AC. Chemistry and medicinal properties of Tinospora cordifolia. Indian J Pharmacol. 2003; 35(2): 83–91. doi:10.4103/0253-7613.36555
14. Kumar GP, Khanum F. Neuroprotective potential of phytochemicals. Pharmacogn Rev. 2012; 6(12): 81–90. doi:10.4103/0973-1296.101103
15. Jin P, Zhan G, Zheng G, Liu J, Peng X, Huang L, et al. Gelstriamine A, a triamino monoterpene indole alkaloid with a caged 6/5/7/6/6/5 scaffold and analgesic alkaloids from Gelsemium elegans stems. J Nat Prod. 2021; 84(4): 1326–34. doi:10.1021/acs.jnatprod.0c01035
16. Mat NH, Bakar SNS, Murugaiyah V, Chawarski MC, Hassan Z. Analgesic effects of main indole alkaloid of kratom, mitragynine, in an acute pain animal model. Behav Brain Res. 2023; 439: 114251. doi:10.1016/j.bbr.2022.114251
17. Matsumoto K, Horie S, Ishikawa H, Takayama H, Aimi N, Ponglux D, et al. Antinociceptive effect of 7-hydroxymitragynine in mice: Discovery of an orally active opioid analgesic from the Thai medicinal herb Mitragyna speciosa. Life Sci. 2004; 74(17): 2143–55. doi:10.1016/j.lfs.2004.04.009
18. Jin Q, Zhao YL, Liu YP, Zhang RS, Zhu PF, Zhao LQ, et al. Anti-inflammatory and analgesic monoterpenoid indole alkaloids of Kopsia officinalis. J Ethnopharmacol. 2022; 285: 114848. doi:10.1016/j.jep.2021.114848
19. Kaur M, Kaur H. Analgesic activity of roots of Aralia racemosa. Res J Pharm Technol. 2011; 4(12): 1896–7. doi:10.5958/0974-360X.2011.01215.4
20. Alsayari A, Ghazwani M, Almaghaslah D, Alhamhoom Y, Louis J, Altohami J, et al. Potential analgesic and diuretic activity of Crataegus oxyacantha Linn. Res J Pharm Technol. 2018; 11(6): 2476–82. doi:10.5958/0974-360X.2018.00170.8
21. Saptarini NM, Deswati DA. Analgesic and antipyretic activities of ethanolic extract of sappan wood (Caesalpinia sappan L.) leaves. Res J Pharm Technol. 2021; 14(10): 5213–6. doi:10.5958/0974-360X.2021.01511.6