Author(s): Mohini Salunke, Rutuja Gangane, Jaydeep Yadav, Ghadge Dhairyasheel, Ramesh Ingole, Balaji Wakure

Email(s): mohinisalunke82@gmail.com

DOI: 10.52711/0974-360X.2026.00128   

Address: Mohini Salunke1*, Rutuja Gangane1, Jaydeep Yadav2, Ghadge Dhairyasheel3, Ramesh Ingole4, Balaji Wakure1*
1Vilasrao Deshmukh Foundation, Group of Institutions, VDF School of Pharmacy, Latur- 413 531, Maharashtra, India.
2Dinesh Bembade College of Pharmacy, Department of Pharmaceutics, Latur- 413 531, Maharashtra, India.
3Gourishankar Institute of Pharmaceutical Education and Research, Limb, Satara, Maharashtra, India-415015
4DJPS College of Pharmacy, Pathri, Parbhani Maharashtra, India-431506.
*Corresponding Author

Published In:   Volume - 19,      Issue - 2,     Year - 2026


ABSTRACT:
An emerging field of nanotechnology that provides benefits over chemical and physical synthesis methods in terms of cost and environmental friendliness is the biological production of nanoparticles. Consequently, scientists attempted to biosynthesize the nanoparticles using biological sources in an effort to lessen their harmful effects. Researchers are concentrating on marine resources since these resources are renewable and accessible year-round. In most cases, the stability and morphology of the seaweed-derived nanoparticles for use in medicinal and environmental applications are comparable to those of other "green" processes. Since nanotechnology may be used practically wherever, it represents an expanding field in medical science. Phyto-constituents are promising and valuable sources for the synthesis of green silver nanoparticles, or AgNPs, which have enormous potential in treating chronic illnesses. Numerous analytical techniques are used to analyse AgNPs, such as SEM, FTIR, XRD, DLS, TEM, and UV-visible spectroscopy. Owing to its many applications, it has been utilized in wound dressing, diagnostics, orthopaedics, the food industry, home, and medical equipment, as well as anticancer anti-bacterial, anti-fungal, and other uses. This article gives an overview of the environmentally friendly process for producing and characterising AgNPs. This research therefore discusses seaweeds as a better way to make metal nanoparticles.


Cite this article:
Mohini Salunke, Rutuja Gangane, Jaydeep Yadav, Ghadge Dhairyasheel, Ramesh Ingole, Balaji Wakure. A Review on Silver Nanoparticles: A Green Synthesis and their use. Research Journal of Pharmacy and Technology. 2026;19(2):905-0. doi: 10.52711/0974-360X.2026.00128

Cite(Electronic):
Mohini Salunke, Rutuja Gangane, Jaydeep Yadav, Ghadge Dhairyasheel, Ramesh Ingole, Balaji Wakure. A Review on Silver Nanoparticles: A Green Synthesis and their use. Research Journal of Pharmacy and Technology. 2026;19(2):905-0. doi: 10.52711/0974-360X.2026.00128   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-57


REFERENCE:
1.    Jain N. Jain P. Rajput D. Patil UK. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters. 2021; 9(1). 
2.    Algburi JB. Saheb L. Anwar QA. Almayahi BA. UV-VIS and SEM assessment of silver nanoparticles synthesized using Nd-YAG laser as antibacterial. Res J Pharm Technol. 2018; 11(4): 1588–1591. 
3.    Sujatha J. Suriya P. Rajeshkumar S. Biosynthesis, and characterization of silver nanoparticles by actinomycetes isolated from agriculture field and its application on antimicrobial activity. Res J Pharm Technol. 2017; 10(6): 1963–1968. 
4.    Salunke MA Wakure BS, Wakte PS. High-resolution liquid chromatography mass spectrometry (HR-LCMS) and 1H NMR analysis of methanol extracts from marine seaweed Gracilaria edulis. Nat Prod Res. 2022; 1–4. https://www.tandfonline.com/ doi/full/10.1080/14786419.2022.2146906.
5.    Salunke MA. Wakure BS. Wakte PS. HR-LCMS assisted phytochemical screening and an assessment of anticancer activity of Sargassum Squarrossum and Dictyota Dichotoma using in vitro and molecular docking approaches. J Mol Struct. 2022; 1270. 
6.    Salunke MA. Wakure BS. Wakte PS. High-resolution liquid chromatography and mass spectrometry (HR-LCMS) assisted phytochemical profiling and an assessment of anticancer activities of Gracilaria foliifera and Turbinaria conoides using in vitro and molecular docking analysis. J Biomol Struct Dyn. 2022; 1–16. 
7.    Kanagavalli U. Sadiq AM. Sathishkumar. Rajeshkumar S. Plant assisted synthesis of silver nanoparticles using boerhaavia diffusa leaves extract and evolution of antibacterial activity. Res J Pharm Technol. 2016; 9(8): 1064–1068. 
8.    Chugh D. Viswamalya VS. Das B. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. Journal of Genetic Engineering and Biotechnology. 2021; 19(1): 126. 
9.    Khodke PB. Popat RR. Burakale PV. Chinchole PP. Shrikhande VN. Silver nanoparticles - A review. Res J Pharm Technol. 2017; 10(6): 1820–1833. 
10.    Li R. Pan Y. Li N. Antibacterial and cytotoxic activities of a green synthesized silver nanoparticles using corn silk aqueous extract. Colloids Surf A Physicochem Eng Asp. 2020; 598. 
11.    Satav P. Chopade N. Shelar K. Vare A. Mulay YR. Review Article: Green Synthesis of Silver Nanoparticles and Their Application. International Journal of Environmental & Agriculture Research (IJOEAR). 2021; 7(7): 66–79. 
12.    Rafique M. Sadaf I. Rafique MS. Tahir MB. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol. 2017; 45(7): 1272–1291. 
13.    Asha S. Thirunavukkarasu P. Rajeshkumar S. Green synthesis of silver nanoparticles using Mirabilis jalapa aqueous extract and their antibacterial activity against respective microorganisms. Res J Pharm Technol. 2017; 10(3): 811–817. 
14.    Siddiqi KS. Husen A. Rao RK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology. 2018; 16(1). 
15.    Reddy SJ. Silver nanoparticles-synthesis, applications, and toxic effects on humans: a review. Int J Bioassays. 2015; 4(11): 4563–4573. www.ijbio.com
16.    Panja A. Mishra AK. Dash M. Pandey NK. Singh SK. Kumar B. Silver nanoparticles – a review. Eurasian J Med Oncol. 2021; 5(2): 95–102. 
17.    Ponnuchamy K. Jacob JA. Metal nanoparticles from marine seaweeds - A review. Nanotechnol Rev. 2016; 5(6): 589–600. 
18.    Salunke MA. Wakure BS. Wakte PS. Phytochemical, UV-VIS, and FTIR Analysis of Gracilaria foliifera. Res J Pharm Technol. 2023; 16(3): 1391–1394. 
19.    Manimaran T. Sudhakar T. Nanda A. Amin Bhat M. Varghese A. Biosynthesis of green nanoparticles from Occimum sanctum and their characterization. Res J Pharm Technol. 2016; 9(4): 397–400. 
20.    Salunke MA. Wakure BS. Wakte PS. Phytochemical analysis of Acanthophora najadiformis using High-Resolution Liquid Chromatography Mass Spectrometry (HR-LCMS) and FTIR. Journal of Pharmaceutical Negative Results. 2022; 13(6): 2215–2218. 
21.    Bose S. Shinde H. Karikalan K. Lalitha P. Mandal AKA. Antibacterial, antiinflamatory, and antiproliferative activity of silver nanoparticles synthesized from leaf extract of Azadirachta indica A. juss. Res J Pharm Technol. 2016; 9(12): 2422. 
22.    Arvindganth R. Anupriya KV. Kathiravan G. Enhancement of Anticancer Drug Annona muricata Against HT-29 Cell Line using Silver Nano Particles. Res J Pharm Technol. 2017;10(2):529. 
23.    Gomathi AC. Xavier Rajarathinam SR. Mohammed Sadiq A. Rajeshkumar S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. J Drug Deliv Sci Technol. 2020; 55. 
24.    Anderson MLC. Dhert WJA. Bruijn JD. Critical size defect in the goat’s os ilium. A model to evaluate bone grafts and substitutes. Clin Orthop Relat Res. 1999; 364(364): 231–9. http://www.ncbi.nlm.nih.gov/pubmed/10416414
25.    Boucher W. Stern J. Kotsinyan V. Intravesical Nanocrystalline Silver Decreases Experimental Bladder Inflammation. J Urol. 2008; 179(4): 1598–1602.  http://linkinghub.elsevier.com/retrieve/ pii/S0022534707030765
26.    Han SW. Nakamura C. Obataya I. Nakamura N. Miyake J. A molecular delivery system by using AFM and nanoneedle. In: Biosensors and Bioelectronics. 2005; p. 2120–2125.
27.    Sobel BE. Schneider DJ. Cardiovascular complications in diabetes mellitus. Curr Opin Pharmacol. 2005; 5: 143–148. 
28.    Salunke MA, Wakure BS, Wakte PS. Hyphenated Techniques for The Characterization of Seaweed Bioactive Compounds. Res J Pharm Technol. 2023; 16(9): 4455–4461. 
29.    Salunke M, Wakure B, Wakte P. Phytochemical Screening of Marine Brown Algae Sargassum squarrossum Greville. Bull Env Pharmacol Life Sci. 2022; 11(2): 112–116.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available