Author(s): Jey Kumar Pachiyappan, D. Nagasamy Venkatesh, Mohammed Asheeq Mydeen, Ananya Choudhury

Email(s): nagasamyvenkatesh@jssuni.edu.in

DOI: 10.52711/0974-360X.2026.00127   

Address: Jey Kumar Pachiyappan, D. Nagasamy Venkatesh*, Mohammed Asheeq Mydeen, Ananya Choudhury
Department of Pharmaceutics, JSS College of Pharmacy (JSS Academy of Higher Education and Research, Mysuru), Ooty – 643001, Nilgiris, Tamil Nadu, India.
*Corresponding Author

Published In:   Volume - 19,      Issue - 2,     Year - 2026


ABSTRACT:
Active Pharmaceutical Ingredients (API’s) can exist in an assortment of strong structures which includes polymorphs, pseudo polymorphs, salts, co-crystal and shapeless solids. A distinct solid form of drugs can exhibit different mechanical, thermal, physical, and chemical properties, which can ultimately alter the drug properties such as its hygroscopic nature and erratic bioavailability. Therefore, a change in the polymorphic form is regarded as one of the most challenging issues faced by the pharmaceutical industry during the formulation of a dosage form. However, this issue could be overcome by certain extent by obtaining a new polymorphic version of pharmaceuticals with a desirable physicochemical property, which would be expected to address the problem. The potential cost and time delay of altering crystal structures during late-stage drug development stimulates rigorous and early polymorphism characterization. Characterization of such thermodynamic instability in pharmaceutical formulation with polymorphic drugs and their polymorphic changes challenge the crystallographic, spectroscopic, and thermal techniques that are widely employed to identify, quantify, and characterise drug and formulations. However, polymorphism in API’s and their formulations is regulated by several regulatory authorities. This article focuses on the most essential polymorph modifications in formulation in terms of pharmaceutical safety and efficacy.


Cite this article:
Jey Kumar Pachiyappan, D. Nagasamy Venkatesh, Mohammed Asheeq Mydeen, Ananya Choudhury. Polymorphic Drugs - Challenges and Characterisation of the Thermodynamic Instability in Pharmaceutical Formulation. Research Journal of Pharmacy and Technology. 2026;19(2):895-4. doi: 10.52711/0974-360X.2026.00127

Cite(Electronic):
Jey Kumar Pachiyappan, D. Nagasamy Venkatesh, Mohammed Asheeq Mydeen, Ananya Choudhury. Polymorphic Drugs - Challenges and Characterisation of the Thermodynamic Instability in Pharmaceutical Formulation. Research Journal of Pharmacy and Technology. 2026;19(2):895-4. doi: 10.52711/0974-360X.2026.00127   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-56


REFERENCES:
1.    Bata L, Broude VL, Fedotov VG, et al. Solid state polymorphism of p-Azoxyanisole. Molecular Crystals and Liquid Crystals. 1978; 44(1-2): 71-82. https://doi.org/10.1080/00268947808084969. 
2.    Chistyakov D, Sergeev G. The polymorphism of drugs: new approaches to the synthesis of nanostructured polymorphs. Pharmaceutics. 2020; 12(1): 34. https://doi.org/10.3390/pharmaceutics12010034. 
3.    Blagden N, De Matas M, Gavan PT, et al. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Advanced Drug Delivery Reviews. 2007; 59(7): 617-30. https://doi.org/10.1016/j.addr.2007.05.011. 
4.    Peterson ML, Hickey MB, Zaworotko MJ, et al. Expanding the scope of crystal form evaluation in pharmaceutical science. J. Pharm. Pharm. Sci. 2006; 9(3): 317-26.
5.    von Raumer M, Hilfiker R. Solid-state and polymorphism of the drug substance in the context of Quality by Design and ICH Guidelines Q8–Q12. Polymorphism in the pharmaceutical industry: Solid Form and Drug Development. 2018 Dec 10:1-30.
6.    Shekunov BY, York P. Crystallization processes in pharmaceutical technology and drug delivery design. Journal of Crystal Growth. 2000; 211(1-4): 122-36. https://doi.org/10.1016/S0022-0248(99)00819-2
7.    Zhang D, La Zara D, Quayle MJ, et al. Nanoengineering of crystal and amorphous surfaces of pharmaceutical particles for biomedical applications. ACS Applied Bio Materials. 2019; 2(4): 1518-30. https://doi.org/10.1021/acsabm.8b00805
8.    Higashi K, Ueda K, Moribe K. Recent progress of structural study of polymorphic pharmaceutical drugs. Advanced Drug Delivery Reviews. 2017; 117: 71-85. https://doi.org/10.1016/j.addr.2016.12.001
9.    Jawahar N, Sureshkumar R, Nagasamy Venkatesh D, et al. Polymorphism: A dissolution rate enhancement technique of nitrendipine. Research Journal of Pharmacy and Technology. 2008; 1(3): 285-86.
10.    Li L, Salamończyk M, Shadpour S, et al. An unusual type of polymorphism in a liquid crystal. Nature Communications. 2018; 9(1): 1-8. https://doi.org/10.1038/s41467-018-03160-9
11.    Kawakami K. Reversibility of enantiotropically related polymorphic transformations from a practical viewpoint: thermal analysis of kinetically reversible/irreversible polymorphic transformations. Journal of Pharmaceutical Sciences. 2007; 96(5): 982-89. https://doi.org/10.1002/jps.20748
12.    Bauer JF. Drying pharmaceutical solids-hydrates and enantiotropic polymorphs. Journal of Validation Technology. 2009; 15(2): 49.
13.    Sharma A, Mishra R, Tandon P. Polymorphism in pharmaceutical compounds. Advancements and Futuristic Trends in Material Science. 2011: 39-48.
14.    Perlovich G, Surov A. Polymorphism of monotropic forms: relationships between thermochemical and structural characteristics. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials. 2020; 76(1): 65-75. https://doi.org/10.1107/S2052520619015671
15.    Raza K, Kumar P, Ratan S, et al. Polymorphism: The phenomenon affecting the performance of drugs. SOJ Pharmacy Pharmaceutical and Science, 2014; 1(2): 10. http://dx.doi.org/10.15226/2374-6866/1/2/00111
16.    Dey R, Chowdhury DR. Review of pharmaceutical solid polymorphism: Preparation, characterization and influence on performance of drugs. Journal of Advances in Bio-pharmaceutics and Pharmacovigilance. 2020 2(1): 33-48. DOI: 10.5281/zenodo.3668629
17.    Svoboda R, Málek J. Amorphous-to-crystalline transition in Te-doped Ge 2 Sb 2 Se 5 glass. Journal of Thermal Analysis and Calorimetry. 2014; 117(3): 1073-83. https://doi.org/10.1007/s10973-014-3910-4
18.    Morissette SL, Almarsson Ö, Peterson ML, et al. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Advanced Drug Delivery rReviews. 2004;  56(3): 275-300. https://doi.org/10.1016/j.addr.2003.10.020
19.    Raymond VJ. Formulation of compounded pharmacy using polymorphism. Research Journal of Pharmacy and Technology. 2017; 10(10): 3456-57.
20.    De Villiers MM. Oral conventional solid dosage forms: powders and granules, tablets, lozenges, and capsules. In Theory and Practice of Contemporary Pharmaceutics 2021 Feb 25 (pp. 279-331). CRC Press, Boca Raton, Florida, USA. https://doi.org/10.1201/9780203644478
21.    Leane MM, Sinclair W, Qian F, et al. Formulation and process design for a solid dosage form containing a spray-dried amorphous dispersion of ibipinabant. Pharmaceutical Development and Technology. 2013; 18(2): 359-66. https://doi.org/10.3109/10837450.2011.619544
22.    Haleblian J, Mc Crone W. Pharmaceutical applications of polymorphism. Journal of Pharmaceutical Sciences. 1969; 58(8): 911-929. https://doi.org/10.1002/jps.2600580802
23.    Zhang GG, Law D, Schmitt EA, et al. Phase transformation considerations during process development and manufacture of solid oral dosage forms. Advanced Drug Delivery Reviews. 2004; 56(3): 371-90. https://doi.org/10.1016/j.addr.2003.10.009
24.    Gupta S, Dhokne S, Verma R, et al. Formulation aspects behind the development of a stable biphasic liquid dosage form with special reference to microemulsion. Research Journal of Pharmacy and Technology. 2017; 10(5): 1509-16.  https://doi:10.5958/0974-360X.2017.00266.9
25.    Yarnykh TG, Kotvitska AA, Tykhonov AI, et al. Pharmaceutical Incompatibilities: Causes, Types and Major ways of Overcoming in Extemporaneous Medicinal forms. Research Journal of Pharmacy and Technology. 2020; 13(7): 3459-65. https://doi:10.5958/0974-360X.2020.00614.9
26.    Glass BD, Haywood A. Stability considerations in liquid dosage forms extemporaneously prepared from commercially available products. Journal  of Pharmacy and Pharmaceutical Science. 2006; 9(3): 398-426. https://doi.org/10.18433/J38887
27.    Kupetz E, Preu L, Kunick C, et al. Parenteral formulation of an antileishmanial drug candidate–Tackling poor solubility, chemical instability, and polymorphism. European Journal of Pharmaceutics and Biopharmaceutics. 2013; 85(3): 511-20. https://doi.org/10.1016/j.ejpb.2013.02.001
28.    Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Advanced Drug Delivery Reviews. 2004; 56(9): 1257-1272. https://doi.org/10.1016/j.addr.2003.12.002
29.    Helgason T, Awad TS, Kristbergsson K, et al. Influence of polymorphic transformations on gelation of tripalmitin solid lipid nanoparticle suspensions. Journal of the American Oil Chemists' Society. 2008; 85(6): 501-11. https://doi.org/10.1007/s11746-008-1219-9 
30.    Hasian J. Study and evaluation of the release of flavonoids extracted from various eggplant cones from semisolid pharmaceutical forms (In vitro). Research Journal of Pharmacy and Technology. 2021; 14(10): 5411-17. https://doi.org/10.52711/0974-360X.2021.00943
31.    Thoma K, Spilgies H. Photostabilization of solid and semisolid dosage forms. In Pharmaceutical Photostability and Stabilization Technology 2006 Sep 18 (pp. 347-368). CRC Press. Boca Raton, Florida, USA https://doi.org/10.1201/9781420014136
32.    Munshi PP, Mohale DS, Akkalwar R, at al. Formulation and evaluation of diclofenac gel. Research Journal of Pharmacy and Technology. 2011; 4(9): 1394-99. 
33.    Sivaraman A, Banga AK. Quality by design approaches for topical dermatological dosage forms. Research and Reports in Transdermal Drug Delivery. 2015; 4: 9-21.
34.    Hasan MM, Rahman MM, Islam MR, et al. A key approach on dissolution of pharmaceutical dosage forms. The Pharma Innovation Journal. 2017; 6(9): 168-180.
35.    Lee YJ, Pahom O, Weeks BL. Kinetic study for comprehensive understanding of solid-state polymorphic transitions of nicotinamide/pimelic acid cocrystals. Crystal Growth and Design. 2019 Jan 9; 19(2):932-41.
36.    Surov AO, Vasilev NA, Churakov AV, et al. Solid forms of ciprofloxacin salicylate: polymorphism, formation pathways, and thermodynamic stability. Crystal Growth and Design. 2019; 19(5): 2979-90.
37.    Wang K, Sun CC. Crystal growth of celecoxib from amorphous state: polymorphism, growth mechanism, and kinetics. Crystal Growth and Design. 2019; 19(6): 3592-3600.
38.    Tao Q, Hao QQ, Voronin AP, et al. Polymorphic forms of a molecular salt of phenazopyridine with 3, 5-dihydroxybenzoic acid: Crystal structures, theoretical calculations, thermodynamic stability, and solubility aspects. Crystal Growth and Design. 2019; 19(10): 5636-47.
39.    Bernasconi D, Bordignon S, Rossi F, et al. Selective synthesis of a salt and a cocrystal of the ethionamide–salicylic acid system. Crystal Growth and Design. 2019; 20(2): 906-915.
40.    Skomski D, Varsolona RJ, Su Y, et al. Islatravir Case Study for Enhanced Screening of Thermodynamically Stable Crystalline Anhydrate Phases in Pharmaceutical Process Development by Hot Melt Extrusion. Molecular Pharmaceutics. 2020; 17(8): 2874-81.
41.    Noonan TJ, Mzondo B, Bourne SA, et al. Polymorphism of the antiviral agent clevudine. CrystEngComm. 2016; 18(42): 8172-81.
42.    Perumalla SR, Wang C, Guo Y, et al. Robust bulk preparation and characterization of sulfamethazine and saccharine salt and cocrystal polymorphs. CrystEngComm. 2019; 21(13): 2089-96.
43.    Wei N, Jia L, Shang Z, et al. Polymorphism of levofloxacin: structure, properties and phase transformation. CrystEngComm. 2019; 21(41): 6196-6207.
44.    Salazar-Rojas D, Maggio RM, Kaufman TS. Preparation and characterization of a new solid form of praziquantel, an essential anthelmintic drug. Praziquantel racemic monohydrate. European J. Pharm Sci. 2020; 146: 105267.
45.    Wardhana YW, Hardian A, Chaerunisa AY, et al. Kinetic estimation of solid state transition during isothermal and grinding processes among efavirenz polymorphs. Heliyon. 2020; 6(5): 03876.
46.    Berkenfeld K, McConville JT, Lamprecht A. (Solvato-) polymorphism of formulations of rifampicin for pulmonary drug delivery prepared using a crystallization/spray drying process. Int. J. Pharm. 2020 Nov 30; 590:119932.
47.    Antonio M, Raffaghelli M, Maggio RM. Tackling quantitative polymorphic analysis through fixed-dose combination tablets production. Pyrazinamide polymorphic assessment. Journal of Pharmaceutical and Biomedical Analysis. 2021 Feb 5; 194: 113786.
48.    Castro RA, Maria TM, Évora AO, et al.  A new insight into pyrazinamide polymorphic forms and their thermodynamic relationships. Crystal Growth and Design. 2010; 10(1): 274-82.
49.    Stofella NC, Veiga A, Oliveira LJ, et al. Solid-state characterization of different crystalline forms of sitagliptin. Materials. 2019; 12(15): 2351.
50.    Acebedo-Martínez FJ, Alarcón-Payer C, Frontera A et al. Novel Polymorphic Cocrystals of the Non-Steroidal Anti-Inflammatory Drug Niflumic Acid: Expanding the Pharmaceutical Landscape. Pharmaceutics. 2021; 13(12): 2140.
51.    Detrich Á, Dömötör KJ, Katona MT, et al. Polymorphic forms of bisoprolol fumarate. Journal of Thermal Analysis and Calorimetry. 2019; 135(6): 304355.
52.    Roque-Flores RL, Guzei IA, Matos JD, et al. Polymorphs of the antiviral drug ganciclovir. Acta Crystallographica Section C: Structural Chemistry. 2017; 73(12): 1116-20.
53.    Wang C, Rosbottom I, Turner TD, et al. Molecular, solid-state and surface structures of the conformational polymorphic forms of ritonavir in relation to their physicochemical properties. Pharm Res. 2021 May 19:1-20.
54.    Voronin AP, Vasilev NA, Surov AO, et al. Exploring the solid form landscape of the antifungal drug isavuconazole: crystal structure analysis, phase transformation behavior and dissolution performance. CrystEngComm. 2021; 23(48):8513-26.
55.    Xu Y, Wu SP, Liu XJ, et al. Crystal characterization and transformation of the forms I and II of anticoagulant drug rivaroxaban. Crystal Research and Technology. 2017; 52(3): 1600379.
56.    Sládková V, Dammer O, Sedmak G, et al. Ivabradine hydrochloride (S)-mandelic acid co-crystal: in situ preparation during formulation. Crystals. 2017; 7(1): 13.
57.    Caplette J, Frigo T, Jozwiakowski M, et al. Characterization of new crystalline forms of hydroxyprogesterone caproate. Int. J Pharm. 2017 15; 527(1-2): 42-51.
58.    Wu WY, Su CS. Modification of solid-state property of sulfasalazine by using the supercritical antisolvent process. Journal of Crystal Growth. 2017; 460: 59-66.
59.    Wang L, Zhao Y, Zhang Z, et al. Polymorphs of acyclovir-maleic acid salt and their reversible phase transition. Journal of Molecular Structure. 2017 Jan 5; 1127:247-51.
60.    Harmsen B, Robeyns K, Wouters J, et al. A study of Fasoracetam’s solid state forms: a potential anti-Alzheimer pharmaceutical. J. Pharm. Sci. 2017 May 1; 106(5): 1317-21.
61.    Mudalip SK, Bakar MR, Adam F, et al. Investigating the role of molecular interactions in polymorphism of Mefenamic acid in ethyl acetate solution. Jurnal Teknologi. 2017 Jul 19; 79(5-3). https://doi.org/10.11113/jt.v79.11322
62.    Neglur R, Hosten E, Aucamp M, et al. Water and the relationship to the crystal structure stability of azithromycin. Journal of Thermal Analysis and Calorimetry. 2018 Apr; 132(1): 373-384.
63.    Paun JS, Raval MK, Tank HM, et al. Optimization of solvents and processing conditions for crystallization of aceclofenac. Asian J. Res. Pharm. Sci. 2013; Vol 3(3): 122-132.
64.    Yadav VB, Yadav AV, Polshettiwar SA, et al. Improved solubility and dissolution behaviour of norfloxacin by crystal modification. Research J. Pharm. Tech. 2018; Vol 1(1): 29-32.
65.    Sabitha Reddy P, Sujani S, Ravindra Reddy K. Microcrystals: For improvement of solubility and dissolution of tinidazole. Asian J. Pharm. Tech. 2011; Vol 1(3): 64-9.
66.    Ashok P, Meyyanathan SN, Vadivelan R, et al. Nanosuspension by solid lipid nanoparticles method for the formulation and in vitro/in vivo characterization of nifedipine. Asian J. Res. Pharm. Sci. 2021; Vol 11(1): 1-6.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available