Author(s):
Bittu Singh, Rajendra Joshi, Kailash Tamta, Bhuwan Chandra, Narain Datt Kandpal
Email(s):
rachem.joshi@gmail.com
DOI:
10.52711/0974-360X.2026.00123
Address:
Bittu Singh1, Rajendra Joshi2*, Kailash Tamta3, Bhuwan Chandra2, Narain Datt Kandpal2
1Physical Chemical Laboratory Department of Chemistry, Soban Singh Jeena Campus - KU, Almora, Uttarakhand - 263601, India.
2Physical Chemical Laboratory, Department of Chemistry, Soban Singh Jeena University, S.S.J. Campus - Almora, Uttarakhand - 263601, India.
3Department of Chemistry, Government Degree College Kanda Bageshwar, Uttarakhand - 263631, India.
*Corresponding Author
Published In:
Volume - 19,
Issue - 2,
Year - 2026
ABSTRACT:
The present investigation focuses comparatively on urea and EDTA to the physicochemical properties that are considered as solute-solvent interactions as physical constants. The following important characteristics are examined: density (?), intermolecular free length (Lf), adiabatic compressibility (ß), acoustic impedance (Z), specific viscosity (?s), Jones-Dole viscosity (?), and sound velocity (U). The study specifically highlights the differences these solutes exhibit with water. EDTA is a complex chelating agent with a large molecular size and strong ion-binding capacity which causes extreme alteration in the properties of the solution. As a result, both intermolecular free length and compressibility are reduced. Urea, as a smaller polar molecule, breaks the hydrogen-bond network of water and changes the water’s density and viscosity but enables relatively higher compressibility values to be preserved. The experimental results indicate that EDTA causes more profound structural changes in aqueous solutions, whereas urea’s effect is mainly limited to the disruption of hydrogen bonds. Such comparative study enhances our perspective on the role of solutes on some macroscopic properties of bulk solutions and may be relevant to biochemical systems, industrial processing, and materials science. The findings stress the role of molecular size, structure and interaction in bringing about the macroscopic behavior of solutions.
Cite this article:
Bittu Singh, Rajendra Joshi, Kailash Tamta, Bhuwan Chandra, Narain Datt Kandpal. Comparative Analysis of EDTA and Urea in Aqueous Solutions: A Study of Physicochemical Properties. Research Journal of Pharmacy and Technology. 2026;19(2):867-2. doi: 10.52711/0974-360X.2026.00123
Cite(Electronic):
Bittu Singh, Rajendra Joshi, Kailash Tamta, Bhuwan Chandra, Narain Datt Kandpal. Comparative Analysis of EDTA and Urea in Aqueous Solutions: A Study of Physicochemical Properties. Research Journal of Pharmacy and Technology. 2026;19(2):867-2. doi: 10.52711/0974-360X.2026.00123 Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-52
REFERENCES:
1. M. F. J. Mabesoone, A. R. A. Palmans, and E. W. Meijer, Solute-Solvent Interactions in Modern Physical Organic Chemistry: Supramolecular Polymers as a Muse, Journal of the American Chemical Society. 2020; 142(47): 19781-19798. DOI: 10.1021/jacs.0c09293.
2. M. Zhang, X. Zhang, Y. Liu, K. Wu, Y. Zhu, H. Lu, and B. Liang, Insights into the relationships between physicochemical properties, solvent performance, and applications of deep eutectic solvents, Environmental Science and Pollution Research International. 2021; 28(35): 35537-35563. DOI: 10.1007/s11356-021-13889-2.
3. J. S. Dhiman, P. K. Sharma, and P. Sharma, Dufour-Soret Driven Double-Diffusive Convection in Nonreactive Binary Fluids with Temperature Dependent Viscosity, International Journal of Technology. 2016; 6(2): 161-169. DOI: 10.5958/2231-3915.2016.00025.0.
4. C. Oviedo and J. Rodríguez, EDTA: The chelating agent under environmental scrutiny, Química Nova. 2003; 26(6): 901-905. DOI: 10.1590/S0100-40422003000600020.
5. Z. Mohammadi, S. Shalavi, and H. Jafarzadeh, Ethylenediaminetetraacetic acid in endodontics, European Journal of Dentistry. 2013; 7(Suppl 1): S135-S142. DOI: 10.4103/1305-7456.119091.
6. A. Fulgenzi and M. E. Ferrero, EDTA Chelation Therapy for the Treatment of Neurotoxicity, International Journal of Molecular Sciences. 2019; 20(5): 1019. DOI: 10.3390/ijms20051019.
7. F. Franks and D. J. G. Ives, The structural properties of alcohol–water mixtures, Quarterly Reviews, Chemical Society. 1966; 1.
8. Y. Nozaki and C. Tanford, The Solubility of Amino Acids and Related Compounds in Aqueous Urea Solutions, Journal of Biological Chemistry. 1963; 238(12): 4074-4081. DOI: 10.1016/S0021-9258(18)51830-5.
9. S. N. Timasheff, The control of protein stability and association by weak interactions with water: how do solvents affect these processes, Annual Review of Biophysics and Biomolecular Structure. 1993; 22: 67-97. DOI: 10.1146/annurev.bb.22.060193.000435.
10. B. J. Bennion and V. Daggett, The molecular basis for the chemical denaturation of proteins by urea, Proceedings of the National Academy of Sciences of the United States of America. 2003; 100(9): 5142-5147. DOI: 10.1073/pnas.0930122100.
11. A. K. Rakshit, The Viscosity of Aqueous BaCl2 + NaCl Solutions, Zeitschrift für Naturforschung A. 2014; 42(8): 903-904. DOI: 10.1515/zna-1987-0823.
12. S. Das and U. N. Dash, Acoustic Parameters of Glycine, α-Alanine and β-Alanine in Aqueous and Aqueous D-Glucose Solutions At 298.15 K, Asian Journal of Research in Chemistry. 2012; 5(1): 53-56.
13. E. S. Balankina and A. K. Lyashchenko, The acoustical and structural changes of aqueous solutions due to transition to molten supercooled salts, Journal of Molecular Liquids. 2002; 101(1-3): 273-283. DOI: 10.1016/S0167-7322(02)00096-X.
14. M. Kiran Kumar, P. Sreeram Naik, Y. N. Ch Ravi Babu, and A. Suresh Kumar, Ultrasonic Studies of Nd3+: L-Tryptophan Amino Acid Complexes, Asian Journal of Research in Chemistry. 2014; 7(2): 159-162.
15. S. Lakshmanan and K. Nagaraja Rao, Studies on the influence of non-electrolytes on the viscosity of an electrolyte solution, Electrochimica Acta. 1969; 14(11): 1173-1181. DOI: 10.1016/0013-4686(69)80043-5.
16. J. Velásquez, L. Evenäs, and R. Bordes, The role of chelating agent in the self-assembly of amphoteric surfactants, Journal of Colloid and Interface Science. 2024; 676: 1079-1087. DOI: 10.1016/j.jcis.2024.07.131.
17. Merck Chemicals, Merck Chemical Catalog, Analytical Grade Standards. 2022.
18. K. Mccormick and J. H. Sanders, Water for pharmaceutical use, Quality (Second Edition). 2022; Pages 263-297. DOI: 10.1016/B978-0-323-90815-3.00004-9.
19. M. N. Quigley, Student preparation of standard solutions, Journal of Chemical Education. 1991; 68(6): 505-506. DOI: 10.1021/ed068p505.
20. R. Joshi and N. D. Kandpal, Viscometric properties of aqueous solutions of poly (ethylene glycols) at 15.0°C, Der Pharmacia Lettre. 2015; 7(10): 126-133.
21. B. Jacobson, Ultrasonic Velocity in Liquids and Liquid Mixtures, Journal of Chemical Physics. 1952; 20(6): 927-928. DOI: 10.1063/1.1700615.
22. A. Saini, A. Prabhune, A. P. Mishra, and R. Dey, Density, ultrasonic velocity, viscosity, refractive index and surface tension of aqueous choline chloride with electrolyte solutions, Journal of Molecular Liquids. 2021; 323: 114593. DOI: 10.1016/j.molliq.2020.114593.
23. P. P. Choudhari, D. S. Hedaoo, andM.P.Wadekar,Adiabaticcompressibility,apparent molal volume, apparent molal compressibility and solvation number of substituted 2-oxo-2-H-chromene-3 carbohydrazide derivatives in 70% DMF-Water, Scholars Research Library, Archives of Applied Science Research. 2016; 8(8): 14-20.
24. A. D. Kakuste, S. S. Borse, and G. H. Sonawane, Exploring the Effects of Polyacrylic Acid on Triton-X-100 Aqueous Solutions: Density, Viscosity and Ultrasonic Velocity Analysis, Asian Journal of Research in Chemistry. 2024; 17(3): 134-138. DOI: 10.52711/0974-4150.2024.00025.
25. M. Kiran Kumar, P. Sreeram Naik, Y. N. Ch Ravi Babu, and A. Suresh Kumar, Ultrasonic Studies of Nd3+: L-Tryptophan Amino Acid Complexes, Asian Journal of Research in Chemistry. 2014; 7(2): 159-162.
26. D. K. Sharma, S. Agarwal, and A. Khan, Intermolecular Free Length and Molar Volume of Binary Liquid Mixtures of Ethyl Acetate with 1-Alkanol At 303.15K, Der Pharma Chemica. 2022; 14(10): 1-9.
27. R. Hamsidi, M. Adianti, M. Septriana, O. Priskila, Wahyuni, A. Fristiohady, M. H. Malaka, V. Aspadiah, L. O. M. Arlan, K. S. Baka, W. Ekasari, A. Widyawaruyanti, and A. F. Hafid, Characteristic of the Ethanol Extract of Carthamus tinctorius L. Flowers and its Antioxidant Activity, Research Journal of Pharmacy and Technology. 2023; 16(2): 791-798. DOI: 10.52711/0974-360X.2023.00136.
28. T. J. Zachariah, N. K. Leela, and A. Shamina, Methods of analysis of herbs and spices, in Handbook of Herbs and Spices (Second Edition), Volume 2, Woodhead Publishing Series in Food Science, Technology and Nutrition. 2012; 89-117. DOI: 10.1533/9780857095688.89.
29. R. Loshil and N. D. Kandpal, Effect of temperature and concentration on the viscosity of perchloric acid, Asian Journal of Chemistry. 2017; 29: 2701-2703.
30. Z. Wang, Y. Cai, J. Wu, S. Xie, and W. Jiao, Relationship between Lower Extremity Fitness Levels and Injury Risk among Recreational Alpine Skiers: A Prospective Cohort Study, International Journal of Environmental Research and Public Health. 2022; 19(16): 10430. DOI: 10.3390/ijerph191610430.
31. J. D. Pandey and Y. Akhtar, Viscosity and density of binary electrolytes in aqueous solutions, Proceedings of the Indian Academy of Sciences (Chemical Sciences). 1997; 109(4): 289-294.
32. R. Joshi, K. Tamta, B. Chandra, and N. D. Kandpal, Interactions of poly(ethylene) glycols in aqueous solution at 288.0K: Ultrasonic studies, International Journal of Applied Chemistry. 2017; 13(3): 611-630.
33. R. George, Density and Coefficients of Jones-Dole Equation for Viscosity of Ternary Solutions Containing Sucrose/NaCl/KCl in Aqueous Glycine/Urea/Thiourea at 25°C, Oriental Journal of Chemistry. 2019; 35(2): 897-900. DOI: http://dx.doi.org/10.13005/ojc/350255.
34. R. Buchner and G. Hefter, Interactions and dynamics in electrolyte solutions by dielectric spectroscopy, Physical Chemistry Chemical Physics. 2009; 11: 8984-8999. DOI: 10.1039/b906555p.
35. S. Kournopoulos, M. S. Santos, S. Ravipati, A. J. Haslam, G. Jackson, I. G. Economou, and A. Galindo, The Contribution of the Ion–Ion and Ion–Solvent Interactions in a Molecular Thermodynamic Treatment of Electrolyte Solutions, Journal of Physical Chemistry B. 2022; 126(47). DOI: 10.1021/acs.jpcb.2c03915.
36. M. Kaminsky, Ion-solvent interaction and the viscosity of strong-electrolyte solutions, Discussions of the Faraday Society. 1957; 24: 171-179. DOI: 10.1039/DF9572400171.
37. Langore, K. R., Viscometric study of metformin complexes with some transition metal ions at different temperatures. Research Journal of Pharmacy and Technology, 2021; 14(3): 1461-1468. https://doi.org/10.5958/0974-360X.2021.00268.7.
38. P. Cysewski, T. Jeliński, and M. Przybyłek, Experimental and Theoretical Insights into the Intermolecular Interactions in Saturated Systems of Dapsone in Conventional and Deep Eutectic Solvents, Molecules. 2024; 29(8): 1743. DOI: 10.3390/molecules29081743.
39. R. Khatun, R. Sultana, and R. K. Nath, Volumetric and Ultrasonic Velocity Studies of Urea and Thiourea in Aqueous Solution, Oriental Journal of Chemistry. 2019; 34(4). DOI: http://dx.doi.org/10.13005/ojc/340407.
40. T. D. Tyler, J. Ophir, N. F. Maklad, and A. Gobuty, In vivo enhancement of ultrasonic image luminance by aqueous solutions with high speed of sound, Ultrasonic Imaging. 1981; 3(4): 323-329. DOI: https://doi.org/10.1016/0161-7346(81)90173-5.
41. L. Parizot, T. Chave, M.-E. Galvez, H. Dutilleul, P. Da Costa, and S. I. Nikitenko, Sonocatalytic oxidation of EDTA in aqueous solutions over noble metal-free Co3O4/TiO2 catalyst, Applied Catalysis B: Environmental. 2019; 241: 570-577. DOI: 10.1016/j.apcatb.2018.09.001.
42. V. Pathania, S. Sharma, S. K. Vermani, and B. K. Vermani, Study of Acoustical Parameters of Monomethylammonium Perchlorate in Some Non-Aqueous Solvents at Different Temperatures Using Ultrasonic Technique, Rasayan Journal of Chemistry. 2020; 13(1): 264-274. DOI: http://dx.doi.org/10.31788/RJC.2020.1315615.
43. X. Chen, C. Boo, and N. Y. Yip, Influence of Solute Molecular Diameter on Permeability-Selectivity Tradeoff of Thin-Film Composite Polyamide Membranes in Aqueous Separations, Water Research. 2021; 201: 117311. DOI: 10.1016/j.watres.2021.117311.
44. M. Lamba, N. Chakraborty, K. Juglan, M. Singla, and R. Sharma, Volumetric-acoustic study of disodium ethylenediaminetetraacetic acid with propylene and hexylene glycol at different temperatures, Journal of Molecular Liquids. 2023; 390: 123045. DOI: https://doi.org/10.1016/j.molliq.2023.123045.
45. Spectroscopic and Ultrasonic Exploration on Molecular Interaction of Ciprofloxacin with L-Glutamic Acid in Aqueous Medium, Research & Development in Material Science. 2019; 12(1). DOI: 10.31031/RDMS.2019.12.000776.
46. R. Hagen, R. Behrends, and U. Kaatze, Acoustical Properties of Aqueous Solutions of Urea: Reference Data for the Ultrasonic Spectrometry of Liquids, Journal of Chemical & Engineering Data. 2004; 49(4): 988-991. DOI: https://doi.org/10.1021/je049971a.
47. G. G. Hammes and P. R. Schimmel, An Investigation of Water-Urea and Water-Urea-Polyethylene Glycol Interactions, Journal of the American Chemical Society. 1967; 89(2): 442-446. DOI: https://doi.org/10.1021/ja00978a050.
48. J. D. Pandey, V. Sanguri, M. K. Yadav, and A. Singh, Intermolecular free length and free volume of pure liquids at varying temperatures and pressures, Indian Journal of Chemistry A. 2008; 47A(07): 1020-1025.
49. W. Marczak, Jacobson’s intermolecular free lengths in liquid mixtures – A thermodynamic approach, Journal of Chemical Thermodynamics. 2023; 185: 107087. DOI: 10.1016/j.jct.2023.107087.
50. P. I. Nagy, Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution, International Journal of Molecular Sciences. 2014; 15(11): 19562-19633. DOI: 10.3390/ijms151119562.
51. F. T. Gucker Jr., F. W. Gage, and C. E. Moser, The Densities of Aqueous Solutions of Urea at 25 and 30° and the Apparent Molal Volume of Urea, Journal of the American Chemical Society. 1938; 60(11). DOI: 10.1021/ja01278a008.
52. Visco Handbook: Basics and Application of Viscometry Using Glass Capillary Viscometers, Xylem Analytics Germany Sales GmbH & Co. KG.
53. O. Cakmak, E. Ermek, N. Kilinc, and G. G. Yaralioglu, Precision density and viscosity measurement using two cantilevers with different widths, Sensors and Actuators A: Physical. 2015; 232. DOI: 10.1016/j.sna.2015.05.024.
54. A. Nag, D. Chakraborty, and A. Chandra, Effects of ion concentration on the hydrogen bonded structure of water in the vicinity of ions in aqueous NaCl solutions, Journal of Chemical Sciences. 2008; 120(1): 71-77.
55. R. George, Density and Coefficients of Jones-Dole Equation for Viscosity of Ternary Solutions Containing Sucrose/NaCl/KCl in Aqueous Glycine/Urea/Thiourea at 25°C, Oriental Journal of Chemistry. 2019; 35(2). DOI: 10.13005/ojc/350255.
56. Jyoti Prakash, Rajeev Kumar. Upper Bounds for the Complex Growth Rate of Thermohaline Convection of Veronis and Stern Types with Viscosity Variations. Int. J. Tech. 4(1): Jan.-June. 2014; Page 117-120
57. M. E. Ahmed, A. S. Sultan, T. Saikia, M. Mahmoud, S. Patil, and M. Kanj, Investigating Effects of Chelating Agents on Viscoelastic Surfactant Flooding at the Pore Scale Using Micromodels, Energy & Fuels. 2023; 37(2). DOI: 10.1021/acs.energyfuels.2c03777.
58. R. S. Patil, V. R. Shaikh, P. D. Patil, A. U. Borse, and K. J. Patil, The viscosity B and D coefficient (Jones–Dole equation) studies in aqueous solutions of alkyltrimethylammonium bromides at 298.15 K, Journal of Molecular Liquids. 2014; 200(Pt B): 416-424. DOI: 10.1016/j.molliq.2014.11.003.
59. D. Ubagaramary, Kesavaswamy, and M. V. Enoch, Comparative Study of Molecular Interactions in Binary Liquid Mixtures of 4-Methyl-2-pentanone With Butan-2-One, Furfuraldehyde, Cyclohexanone At 308 K, Oriental Journal of Chemistry. 2016; 32(1): 321-330. DOI: 10.13005/ojc/320136.
60. A. R. Titus, P. P. Madeira, L. A. Ferreira, A. I. Belgovskiy, E. K. Mann, J. A. Mann Jr, W. V. Meyer, A. E. Smart, V. N. Uversky, and B. Y. Zaslavsky, Arrangement of Hydrogen Bonds in Aqueous Solutions of Different Globular Proteins, International Journal of Molecular Sciences. 2022; 23(19): 11381. DOI: 10.3390/ijms231911381.
61. H. Yan, Z. D. Rengert, A. W. Thomas, C. Rehermann, J. Hinks, and G. C. Bazan, Influence of molecular structure on the antimicrobial function of phenylenevinylene conjugated oligoelectrolytes, Chemical Science. 2016; 9.
62. G. S. Reddy and R. S. Reddy, Selection of Organic Solvent for Microencapsulation Technique among Dodecane, Acetone, Hexane and Heptane with water, Research Journal of Pharmacy and Technology. 2016; 9(8): 1097-1108. DOI: 10.5958/0974-360X.2016.00209.2.