Author(s):
Sonali Sahoo, Smriti Dewangan, Debasmita Dubey, Pratap Kumar Sahu, Durga Madhab Kar, Jyotirmaya Sahoo, Rakesh Tiwle, Shakti Ketan Prusty
Email(s):
shaktiketanprusty@soa.ac.in
DOI:
10.52711/0974-360X.2026.00122
Address:
Sonali Sahoo1, Smriti Dewangan2, Debasmita Dubey3, Pratap Kumar Sahu1, Durga Madhab Kar1, Jyotirmaya Sahoo4, Rakesh Tiwle5, Shakti Ketan Prusty1*
1School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India, 751003.
2Amity Institute of Pharmacy, Amity University Chhattisgarh Chhattisgarh, Raipur, Chhattisgarh.
3Medical Research Laboratory, IMS and Sum Hospital, Bhubaneswar, Odisha, India, 751003.
4School of Pharmacy, ARKA JAIN University, Jamshedpur, Jharkhand, India, 832108.
5Gondia college of Pharmacy, Chlood, Road, Gondia 441601, Maharashtra.
*Corresponding Author
Published In:
Volume - 19,
Issue - 2,
Year - 2026
ABSTRACT:
A growing body of research links diabetes to cognitive decline and Alzheimer’s disease (AD), possibly through mutual pathological mechanisms. This study explores the role of gut microbiota, specifically the probiotic Lacticaseibacillus casei (L. casei), in diabetes-induced AD (DI-AD). Using a rat model injected with streptozotocin (STZ), we assessed the effects of L. casei, donepezil (DNP), and their combination over a 21-day period. L. casei significantly improved cognitive function in behavioural tests, increased antioxidant enzyme (SOD) levels, and reduced oxidative stress marker (MDA) levels. RT-PCR analysis showed enhanced beneficial gut bacteria and reduced E. coli, indicating improved gut health. Additionally, L. casei treatment lowered amyloid-ß levels and reduced neurodegeneration in both gut and hippocampal tissues. These results suggest that L. casei, especially when combined with DNP, may protect against DI-AD by modulating gut microbiota and reducing neuroinflammation and amyloid pathology, offering a promising therapeutic approach.
Cite this article:
Sonali Sahoo, Smriti Dewangan, Debasmita Dubey, Pratap Kumar Sahu, Durga Madhab Kar, Jyotirmaya Sahoo, Rakesh Tiwle, Shakti Ketan Prusty. The Modulation of Gut Microbiota via Lacticaseibacillus casei Mitigates the Alzheimer's Disease Induced by Streptozotocin: An Animal Model. Research Journal of Pharmacy and Technology. 2026;19(2):859-6. doi: 10.52711/0974-360X.2026.00122
Cite(Electronic):
Sonali Sahoo, Smriti Dewangan, Debasmita Dubey, Pratap Kumar Sahu, Durga Madhab Kar, Jyotirmaya Sahoo, Rakesh Tiwle, Shakti Ketan Prusty. The Modulation of Gut Microbiota via Lacticaseibacillus casei Mitigates the Alzheimer's Disease Induced by Streptozotocin: An Animal Model. Research Journal of Pharmacy and Technology. 2026;19(2):859-6. doi: 10.52711/0974-360X.2026.00122 Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-51
REFERENCES:
1. Rawlings AM. Sharrett AR. Schneider AL. Coresh J. Albert M. Couper D. Griswold M. Gottesman RF. Wagenknecht LE. Windham BG. Selvin E. Diabetes in midlife and cognitive change over 20 years: a cohort study. Annals of Internal Medicine. 2014 Dec 2; 161(11): 785-93. https://doi.org/10.7326/M14-0737.
2. Martins IJ. Hone E. Foster JK. Sünram-Lea SI. Gnjec A. Fuller SJ. Nolan D. Gandy SE. Martins RN. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Molecular Psychiatry. 2006 Aug; 11(8): 721-36. https://doi.org/10.1038/sj.mp.4001854.
3. Huang GB. Zhu QY. Siew CK. Extreme learning machine: theory and applications. Neurocomputing. 2006 Dec 1; 70(1-3): 489-501. https://doi.org/10.1016/j.neucom.2005.12.126.
4. Pai V. Chandrashekar KS. Shreedhara CS. Pai A. In-Silico and In-Vitro correlation studies of natural β-secretase inhibitor: An approach towards Alzheimer's Disease. Research Journal of Pharmacy and Technology. 2017; 10(10): 3506-10. Pal T, Das M. Review of Alzheimer’s Disease’s Animal Model with it’s Pathophysiology and Drug Discovery. http://dx.doi.org/10.5958/0974-360X.2017.00628.X.
5. Justin A. Manisha C. Choephel T. Thomas P. Jeyarani V. Banerjee S. Mani S. Recent advances in the treatment of Alzheimer's disease: An Immunotherapeutic approach. Research Journal of Pharmacy and Technology. 20201; 13(4): 2057-62. 10.5958/0974-360X.2020.00370.4.
6. Pal T. Das M. Review of Alzheimer’s Disease’s Animal Model with it’s Pathophysiology and Drug Discovery. http:/dx.doi.org/10.52711/2231-5659.2024.00006.
7. Aanandhi MV. Niventhi A. Rujaswini T. Hemalatha CN. Praveen D. A Comprehensive Review on the Role of Tau Proteins in Alzheimer's Pathology. Research Journal of Pharmacy and Technology. 2018; 11(2): 788-90. 10.5958/0974-360X.2018.00149.X
8. Butterfield DA. Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nature Reviews Neuroscience. 2019 Mar; 20(3): 148-60. https://doi.org/10.1038/s41583-019-0132-6.
9. Stanley M. Macauley SL. Holtzman DM. Changes in insulin and insulin signaling in Alzheimer’s disease: cause or consequence?. Journal of Experimental Medicine. 2016 Jul 25; 213(8): 1375-85. https://doi.org/10.1084/jem.20160493.
10. Sehar U. Rawat P. Reddy AP. Kopel J. Reddy PH. Amyloid beta in aging and Alzheimer’s disease. International Journal of Molecular Sciences. 2022 Oct 26; 23(21): 12924. https://doi.org/10.3390/ijms232112924.
11. Nguyen TT. Ta QT. Nguyen TK. Nguyen TT. Van Giau V. Type 3 diabetes and its role implications in Alzheimer’s disease. International Journal of Molecular Sciences. 2020 Apr 30; 21(9): 3165. https://doi.org/10.3390/ijms21093165.
12. Chitra V. Narayanan J. In vitro screening for anti-cholinesterase and anti oxidant activity of extract of garcinia hanburyi. Research Journal of Pharmacy and Technology. 2018; 11(7): 2918-21. http://dx.doi.org/10.5958/0974-360X.2018.00538.3.
13. Luca M. Di Mauro M. Di Mauro M. Luca A. Gut microbiota in Alzheimer’s disease, depression, and type 2 diabetes mellitus: The role of oxidative stress. Oxidative medicine and cellular longevity. 2019; 2019(1): 4730539. https://doi.org/10.1155/2019/4730539.
14. Butler SO. Btaiche IF. Alaniz C. Relationship between hyperglycemia and infection in critically ill patients. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2005 Jul; 25(7): 963-76. https://doi.org/10.1592/phco.2005.25.7.963
15. Geerlings SE. Hoepelman AI. Immune dysfunction in patients with diabetes mellitus (DM). FEMS Immunology and Medical Microbiology. 1999 Dec 1; 26(3-4): 259-65. https://doi.org/10.1111/j.1574-695X.1999.tb01397.x.
16. Casqueiro J. Casqueiro J. Alves C. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian Journal of Endocrinology and Metabolism. 2012 Mar 1; 16(Suppl1): S27-36. 10.4103/2230-8210.94253.
17. Alkasir R. Li J. Li X. Jin M. Zhu B. Human gut microbiota: the links with dementia development. Protein and Cell. 2017 Feb; 8(2): 90-102. 10.1007/s13238-016-0338-6.
18. Venkatachalam S. Jaiswal A. De A. Vijayakumar RK. Repurposing drugs for management of Alzheimer disease. Research Journal of Pharmacy and Technology. 2019 Jun 1; 12(6): 3078-88. 10.5958/0974-360X.2019.00522.5.
19. Pol RP. Naikwade NS. Dias RJ. Targeting Aβ protein in Alzheimer's Disease. Research Journal of Pharmacy and Technology. 2020; 13(2): 1004-8. http://dx.doi.org/10.5958/0974-360X.2020.00186.9.
20. Mancuso C. Santangelo R. Alzheimer’s disease and gut microbiota modifications: the long way between preclinical studies and clinical evidence. Pharmacological Research. 2018 Mar 1; 129: 329-36. https://doi.org/10.1016/j.phrs.2017.12.009.
21. Zhang Y. Du R. Wang L. Zhang H. The antioxidative effects of probiotic Lactobacillus casei Zhang on the hyperlipidemic rats. European Food Research and Technology. 2010 May; 231: 151-8. https://doi.org/10.1007/s00217-010-1255-1.
22. Yeon SW. You YS. Kwon HS. Yang EH. Ryu JS. Kang BH. Kang JH. Fermented milk of Lactobacillus helveticus IDCC3801 reduces beta-amyloid and attenuates memory deficit. Journal of Functional Foods. 2010 Apr 1; 2(2): 143-52. https://doi.org/10.1007/s00217-010-1255-1.
23. Thananimit S. Pahumunto N. Teanpaisan R. Characterization of short chain fatty acids produced by selected potential probiotic lactobacillus strains. Biomolecules. 2022 Dec 7; 12(12): 1829. https://doi.org/10.3390/biom12121829.
24. Gao C. Li B. He Y. Huang P. Du J. He G. Zhang P. Tang H. Chen S. Early changes of fecal short‐chain fatty acid levels in patients with mild cognitive impairments. CNS Neuroscience and Therapeutics. 2023 Nov; 29(11): 3657-66. https://doi.org/10.1111/cns.14252.
25. Toejing P. Khat-Udomkiri N. Intakhad J. Sirilun S. Chaiyasut C. Lailerd N. Putative mechanisms responsible for the antihyperglycemic action of Lactobacillus paracasei HII01 in experimental type 2 diabetic rats. Nutrients. 2020 Oct 1; 12(10): 3015. https://doi.org/10.3390/nu12103015.
26. Srivastava S. Shrivastava M. Sharma P. Singh R. Lactobacillus casei and Bifidobacterium bifidum reduces postprandial hyperglycaemia, inhibits α-glucosidase activity and improve histology of pancreatic islets in streptozotocin induced diabetic rats. Chemical Biology Letters. 2021 Sep 6; 8(3): 88-93.
27. ADESIJI Y. OWOLABI S. AYELAGBE OG. OLOWE A. Effects of Lactobacillus acidophilus on Biochemical Indices and Liver Histology in Streptozotocin-induced Diabetic Rats. Journal of Clinical and Diagnostic Research. 2019 Jul 1; 13(7). 10. 7860/JCDR/2019/40762.13001
28. Utami T. Kusuma EN. Satiti R. Rahayu ES. Cahyanto MN. Hydrolyses of meat and soybean proteins using crude bromelain to produce halal peptone as a complex nitrogen source for the growth of lactic acid bacteria. International Food Research Journal. 2019 Mar 1; 26(1). http://www.ifrj.upm.edu.my/26%20(01)%202019/(12).pdf.
29. Shokryazdan P. Faseleh Jahromi M. Navidshad B. Liang JB. Effects of prebiotics on immune system and cytokine expression. Medical Microbiology and Immunology. 2017 Feb; 206: 1-9. https://doi.org/10.1007/s00430-016-0481-y.
30. Veerendra Kumar MH. Gupta YK. Effect of Centellaasiatica on cognition and oxidative stress in an intracerebroventricularstreptozotocin model of Alzheimer's disease in rats. Clinical and Experimental Pharmacology and Physiology. 2003 May; 30(5‐6): 336-42. https://doi.org/10.1046/j.1440-1681.2003.03842.x.
31. Takada M. Nishida K. Kataoka‐Kato A. Gondo Y. Ishikawa H. Suda K. Kawai M. Hoshi R. Watanabe O. Igarashi T. Kuwano Y. Probiotic Lactobacillus casei strain Shirota relieves stress‐associated symptoms by modulating the gut–brain interaction in human and animal models. https://doi.org/10.1111/nmo.12804.
32. Chen S. Ou Y. Zhao L. Li Y. Qiao Z. Hao Y. Ren F. Differential effects of Lactobacillus casei strain Shirota on patients with constipation regarding stool consistency in China. Journal of Neurogastroenterology and Motility. 2019 Jan; 25(1): 148. https://doi.org/10.5056/jnm17085.
33. Mohapatra D. Kanungo S. Pradhan SP. Jena S. Prusty SK. Sahu PK. Captopril is more effective than Perindopril against aluminium chloride induced amyloidogenesis and AD like pathology. Heliyon. 2022 Feb 1; 8(2): e08935. https://doi.org/10.1016/j.heliyon.2022.e08935.
34. Prusty SK. Pati AK. Subudhi BB. Sahu PK. Chronic forced swimming induced stress alters behavioural, histological and anti-oxidant status. Indian Drugs. 2017 Jun 1; 54(6). https://doi.org/10.53879/id.54.06.10837.
35. Pradhan SP. Sahoo S. Behera A. Sahoo R. Sahu PK. Memory amelioration by hesperidin conjugated gold nanoparticles in diabetes induced cognitive impaired rats. Journal of Drug Delivery Science and Technology. 2022 Mar 1;69:103145. https://doi.org/10.1016/j.jddst.2022.103145.
36. Kwon HS. Yang EH. Yeon SW. Kang BH. Kim TY. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. FEMS Microbiology Letters. 2004 Oct 1; 239(2): 267-75. https://doi.org/10.1016/j.femsle.2004.08.049.
37. Momtaz H. Rahimi E. Moshkelani S. Molecular detection of antimicrobial resistance genes in E. coli isolated from slaughtered commercial chickens in Iran. Vet. Med. 2012 Apr 1;57(4):193-7. 10.17221/5916-VETMED.
38. Uzar E. Alp H. Cevik MU. Fırat U. Evliyaoglu O. Tufek A. Altun Y. Ellagic acid attenuates oxidative stress on brain and sciatic nerve and improves histopathology of brain in streptozotocin-induced diabetic rats. Neurological Sciences. 2012 Jun; 33(3): 567-74. https://doi.org/10.1007/s10072-011-0775-1.
39. Dietrich WD. Alonso O. Busto R. Globus MY. Ginsberg MD. Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Actaneuropathologica. 1994 Mar; 87: 250-8. https://doi.org/10.1007/BF00296740.
40. Park MR. Shin M. Mun D. Jeong SY. Jeong DY. Song M. Ko G. Unno T. Kim Y. Oh S. Probiotic Lactobacillus fermentum strain JDFM216 improves cognitive behavior and modulates immune response with gut microbiota. Scientific Reports. 2020 Dec 10; 10(1): 21701. https://doi.org/10.1038/s41598-020-77587-w.
41. Dudchenko PA. An overview of the tasks used to test working memory in rodents. Neuroscience and Biobehavioral Reviews. 2004 Jan 1; 28(7): 699-709. https://doi.org/10.1016/j.neubiorev.2004.09.002.
42. Nimgampalle M. Kuna Y. Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. Journal of Clinical and Diagnostic Research: JCDR. 2017 Aug; 11(8): KC01. https://doi.org/10.7860/JCDR/2017/26106.10428.
43. Bandaru N. Komavari C. Gorla US. Koteswarao GS. Kulandaivelu U. Ankarao A. Neuroprotective effect of Conessinin on Elevated oxidative stress induced Alzheimers' disease in rats. Research Journal of Pharmacy and Technology. 2020; 13(6): 2703-7. http://dx.doi.org/10.5958/0974-360X.2020.00481.3.
44. Talwalkar A. Kailasapathy K. Metabolic and biochemical responses of probiotic bacteria to oxygen. Journal of Dairy Science. 2003 Aug 1; 86(8): 2537-46. https://doi.org/10.3168/jds.S0022-0302(03)73848-X.
45. Tamilselvan M. Tamilanban T. Chitra V. Unfolding remedial targets for Alzheimer's disease. Research Journal of Pharmacy and Technology. 2020; 13(6): 3021-7. http://dx.doi.org/10.5958/0974-360X.2020.00534.X.
46. Mir Z. Baig AA. Naeem B. Nadeem IM. Simbak NB. Zubaidi AL. Ariff TM. Khalili MR. Kamal MA. Synergistic Molecular Effect of BDNF, ApoE and MTHFR in inducing Depression in Alzheimer's Disease. Research Journal of Pharmacy and Technology. 2018 Oct 1; 11(10): 4317-23. http://dx.doi.org/10.5958/0974-360X.2018.00790.4.
47. Zhou Z. Chen X. Sheng H. Shen X. Sun X. Yan Y. Wang J. Yuan Q. Engineering probiotics as living diagnostics and therapeutics for improving human health. Microbial Cell Factories. 2020 Dec; 19: 1-2. https://doi.org/10.1186/s12934-020-01318-z.
48. Karthika S. Kannappan N. Suriyaprakash TN. Effect of Medicinal plants on amyloid β1–42 Intoxicated SH-SY5Y cell Lines-As Neuroprotective Evaluation. Research Journal of Pharmacy and Technology. 2020; 13(7): 3351-5. http://dx.doi.org/10.5958/0974-360X.2020.00595.8.
49. Sonn K. Zharkovsky A. The effects of STZ-induced diabetes on cognition and brain amyloid in 5XFAD mouse model of Alzheimer’s disease. SpringerPlus. 2015 Jan 1; 4(Suppl 1): P44. https://doi.org/10.1186/2193-1801-4-S1-P44.
50. Ali MA. Mustafa NG. A comparative histopathological study of pancreas, intestine, and liver of experimentally induced diabetes in rats. Iraqi Journal of Veterinary Sciences. 2023 Oct 1; 37(4): 971-8. 10.33899/IJVS.2023.138343.2791.