Author(s): Anju Das, Geetha K M

Email(s): anju1989das@gmail.com

DOI: 10.52711/0974-360X.2026.00121   

Address: Anju Das1*, Geetha K M2
1Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam-781035, India.
2Department of Pharmacology, College of Pharmaceutical Sciences, Dayananda Sagar University, Shavige Malleshwara Hills, Kumaraswamy Layout, Bengaluru, Karnataka, 560078, India.
*Corresponding Author

Published In:   Volume - 19,      Issue - 2,     Year - 2026


ABSTRACT:
Purpose: To evaluate anti-diabetic effects of phytoconstituents isolated from L. ciliata by using STZ-induced invivo diabetic model. Methods: Type 2 diabetes was induced in rats via intraperitoneal streptozotocin and nicotinamide (65–110mg/kg). Group 1(normal control) received 0.2% CMC (5mL/kg), Group 2 (diabetic control), Group 3 (diabetic) received exenatide (4µg/kg), while Groups 4 and 5 (diabetic) were treated with LCF-1(10 and 20mg/kg) respectively for 14 days. Blood glucose, GLP-1, DPP-4 inhibition, beta-cell regeneration, and GLUT-2/GLUT-4 gene expression were assessed. Results: In Group 2, body weight significantly decreased compared to Group 1. On the 14th day, blood glucose levels significantly decreased in the exenatide and LCF-1 treated groups compared to Group 2(p<0.01), indicating their anti-diabetic properties. LCF-1 exhibited a notable increase in GLP-1 secretion (p<0.001) and plasma insulin levels (p<0.05) compared to Group 1 and Group 3, suggesting its antidiabetic effect, partly via GLP-1 secretion promotion. Additionally, LCF-1 treatment led to significant increases in GLP-1 secretion (p<0.001), DPP-4 inhibition (p<0.05), serum insulin levels (p<0.05), and beta-cell regeneration. The LCF-1 treatment notably upregulated glucose transport gene expression compared to both untreated and control groups, indicating a potential enhancement in glucose uptake mechanisms. Conclusion: Our study concludes that LCF 1 act as a potent antidiabetic agent by stimulating pancreatic insulin release, increasing GLP-1 levels, DPP-4 inhibition, promoting beta cell regeneration and glucose transport gene expression in STZ induced diabetic model.


Cite this article:
Anju Das, Geetha K M. Lindernia ciliata Exhibits Anti-Diabetic effects in Streptozotocin-Induced Diabetic Model by Upregulation of GLUT-2 and GLUT-4 Gene Expression. Research Journal of Pharmacy and Technology. 2026;19(2):851-8. doi: 10.52711/0974-360X.2026.00121

Cite(Electronic):
Anju Das, Geetha K M. Lindernia ciliata Exhibits Anti-Diabetic effects in Streptozotocin-Induced Diabetic Model by Upregulation of GLUT-2 and GLUT-4 Gene Expression. Research Journal of Pharmacy and Technology. 2026;19(2):851-8. doi: 10.52711/0974-360X.2026.00121   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-50


8. REFERENCES:
1.    Ayu A. Zuraidah, Dwi Winarni, Hunsa Punnapayak, Win Darmanto. Therapeutic Effect of Okra (Abelmoschus esculentus Moench) Pods Extract on Streptozotocin-Induced Type-2 Diabetic Mice. Research J. Pharm. and Tech. 2019; 12(8): 3703-3708. doi: 10.5958/0974-360X.2019.00633.4
2.    Shanmuga Sundaram C., Subramanian S. Biochemical Evaluation of Hypoglycemic Activity of Musa paradisiaca (Plantain) Flowers in STZ- induced Experimental Diabetes in Rats. Asian J. Research Chem. 2011; 4(5): 827-833.
3.    Mahadeva Rao U.S., S Akbar Kausar, R. Babu Janarthanam, Sinouvassane Djearamane, S. Suresh Kumar. Biochemical Evaluation of Antidiabetic Effect of Kasini ashshifa, a Polyherbal formulation in High Fat Diet Fed- Low Dose STZ Induced Diabetes in Rats. Research J. Pharm. and Tech. 2020; 13(3): 1474-1482. doi: 10.5958/0974-360X.2020.00269.3)
4.    Rasha N. Mohammed, Hanan H. Ramadhan, Falah H. Shari. Hypoglycemic, Hypolipidemic, Renal Protective and Antioxidant Activity of Annona muricata in Streptozotocin-Induced Diabetic Rats. Research Journal of Pharmacy and Technology. 2021; 14(12): 6484-0. doi: 10.52711/0974-360X.2021.01121
5.    U. S. Mahadeva Rao, R. Babujanarthanam, B. Arirudran. Clinical Evaluation to Assess the Efficacy of Ethanolic Extract of Avocado Fruit on Diabetic Dyslipidemia Studied in STZ- Induced Experimental Albino Rats. Asian J. Research Chem. 2011; 4(7): 1131-1136.
6.    Barukial J, Sarmah JN. Ethnomedicinal plants used by the people of Golaghat district, Assam, India. Int J Med Aromat Plants. 2011; 1(3): 203-211.
7.    MPharma GP. Antihypergycemic activity of ethanolic extract of leaves of Dioscorea japonica in STZ-induced diabetic rats. Research Journal of Pharmacy and Technology. 2012; 5(4): 553.
8.    Das A, Mukundan GK. Exploring the potential of Lindernia ciliata: isolation, characterization, and pharmacological evaluation of its anti-diabetic properties. Nat Prod Res. 2023. doi:10.1080/14786419.2023.2297253.
9.    Das A, Mukundan GK. Toxicity assessment of Lindernia ciliata (Colsm.) Pennell in albino rats: an acute oral toxicity study. Int J Biol Pharm Allied Sci. 2025; 14(5). doi:10.31032/IJBPAS/2025/14.5.8994.
10.    Dewanjee S, Das AK, Sahu R, Gangopadhyay M. Antidiabetic activity of Diospyros peregrina fruit: effect on hyperglycemia, hyperlipidemia, and augmented oxidative stress in experimental type 2 diabetes. Food Chem Toxicol. 2009; 47(10): 2679-2685. doi:10.1016/j.fct.2009.08.003.
11.    Wang X, Li Z, Huang X, Li F, Liu J, Li Z, Bai D. An experimental study of exenatide effects on renal injury in diabetic rats. Acta Cir Bras. 2019; 34(3). doi:10.1590/s0102-865020190030000008.
12.    Basu A, Basu R, Shah P, Vella A, Johnson CM, Nair KS, Rizza RA. Effects of type 2 diabetes on insulin secretion, action, and clearance during hyperglycemia. Am J Physiol Endocrinol Metab. 2002; 282(2)–E185. doi:10.1152/ajpendo.2002.282.2.E177.
13.    Trinder P. Determination of blood glucose using 4-amino phenazone as oxygen acceptor. J Clin Pathol. 1969; 22(2): 246. doi:10.1136/jcp.22.2.246-b.
14.    Ishikawa Y, Hira T, Inoue D, Harada Y, Hashimoto H, Fujii M, et al. Rice protein hydrolysates stimulate GLP-1 secretion, reduce GLP-1 degradation, and lower the glycemic response in rats. Food Funct. 2015; 6(8): 2525-2534. doi:10.1039/c4fo01054j.
15.    Karl T, Chwalisz WT, Wedekind D, Hedrich HJ, Hoffmann T, Jacobs R, et al. Localization, transmission, spontaneous mutations, and variation of function of the DPP-4 (Dipeptidyl-peptidase IV; CD26) gene in rats. Regul Pept. 2003; 115(2): 81-90. doi:10.1016/s0167-0115(03)00149-6.
16.    Flock G, Baggio LL, Longuet C, Drucker DJ. The incretin receptors for GLP-1 and GIP are essential for the sustained metabolic actions of vildagliptin in mice. Diabetes. 2007; 56(12): 3006-3013. doi:10.2337/db07-0697.
17.    Sivashanmugam AT, Chatterjee TK. In vitro and in vivo antidiabetic activity of Polyalthia longifolia (Sonner.) Thw. leaves. Orient Pharm Exp Med. 2013; 13: 289-300. doi:10.1007/s13596-013-0109-5.
18.    Villanueva-Peñacarrillo ML, Puente J, Redondo A, Clemente F, Valverde I. Effect of GLP-1 treatment on GLUT2 and GLUT4 expression in type 1 and type 2 rat diabetic models. Endocrine. 2001; 15(3): 241-248. doi:10.1385/ENDO:15:3:241.
19.    Sumithira George, Mugundhan Duraisamy, Rajesh Venugopalan, Kalaiselvan. D. Neuroprotective Effect of Mallotus philippensis Extract in Streptozotocin Induced Diabetic Neuropathy in Rats. Research Journal of Pharmacy and Technology. 2023; 16(10): 4649-7. doi: 10.52711/0974-360X.2023.00756
20.    Budhwani Ashok K., Shrivastava B., Singhai A.K., Gupta Prashant. Antihyperglycemic activity of ethanolic extract of leaves of Dioscorea japonica in STZ-induced diabetic rats. Research J. Pharm. and Tech. 2012; 5(4): 553-557.
21.    Arpita Karandikar, G. Sriram Prasath, S. Subramanian. Evaluation of Antidiabetic and Antioxidant Activity of Praecitrullus fistulosus Fruits in STZ Induced Diabetic Rats. Research J. Pharm. and Tech. 2014; 7(2): 196-203.
22.    Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res. 2001; 50(6): 537-546.
23.    Ibrahim SS, Rizk SM. Nicotinamide: a cytoprotectant against streptozotocin-induced diabetic damage in Wistar rat brains. Afr J Biochem Res. 2008; 2(8): 174-180.
24.    Perez-Gutierrez RM, Damian-Guzman M. Meliacinolin: a potent α-glucosidase and α-amylase inhibitor isolated from Azadirachta indica leaves and in vivo antidiabetic property in streptozotocin-nicotinamide-induced type 2 diabetes in mice. Biol Pharm Bull. 2012; 35(9): 1516-1524. doi:10.1248/bpb.b12-00246.
25.    Patel D, Ayesha IE, Monson NR, Klair N, Patel U, Saxena A, Hamid P. The effectiveness of metformin in diabetes prevention: a systematic review and meta-analysis. Cureus. 2023; 15(9). doi:10.7759/cureus.46108.
26.    Tomlinson B, Patil NG, Fok M, Chan P, Lam CWK. The role of sulfonylureas in the treatment of type 2 diabetes. Expert Opin Pharmacother. 2022; 23(3): 387-403. doi:10.1080/14656566.2021.2023776.
27.    Das A, Geetha KM, Hazarika I. Contemporary updates on the physiology of glucagon-like peptide-1 and its agonist to treat type 2 diabetes mellitus. Int J Pept Res Ther. 2020; 26: 1211-1221. doi:10.1007/s10989-019-09927-y.
28.    Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007; 132: 2131-2157. doi:10.1053/j.gastro.2007.03.054.
29.    Duez H, Cariou B, Staels B. DPP-4 inhibitors in the treatment of type 2 diabetes. Biochem Pharmacol. 2012; 83(7): 823-832. doi:10.1016/j.bcp.2011.12.028.
30.    Drucker DJ. Mechanisms of action and therapeutic application of glucagon-like peptide-1. Cell Metab. 2018; 27(4): 740-56. doi:10.1016/j.cmet.2018.03.001.
31.    Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight. J Clin Invest. 2014; 124(10): 4223-26. doi:10.1172/JCI76301.
32.    Deacon CF. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: a comparative review. Diabetes Obes Metab. 2018; 20(1): 34-46. doi:10.1111/dom.13189.
33.    Nauck MA, Meier JJ. The incretin effect in healthy individuals and those with type 2 diabetes: physiology, pathophysiology, and response to therapeutic interventions. Lancet Diabetes Endocrinol. 2016; 4(6): 525-36. doi:10.1016/S2213-8587(15)00482-9.
34.    Yazdanparast RY, Esmaeili MA, Helan JA. Teucrium polium extract effects pancreatic function of streptozotocin diabetic rats: a histopathological examination. Iran J Pharm Res.
35.    Pepato MT, Migliorini RH, Goldberg AL, Kettelhut IC. Role of different proteolytic pathways in degradation of muscle protein from streptozotocin-diabetic rats. Am J Physiol Endocrinol Metab. 1996; 271(2). doi:10.1152/ajpendo.1996.271.2.E340.
36.    Kurup S, Bhonde RR. Combined effect of nicotinamide and streptozotocin on diabetic status in partially pancreatectomized adult BALB/c mice. Horm Metab Res. 2000; 32(8): 330-334. doi:10.1055/s-2007-978646.
37.    Chandran R, Parimelazhagan T, Shanmugam S, Thankarajan S. Antidiabetic activity of Syzygium calophyllifolium in streptozotocin-nicotinamide induced type-2 diabetic rats. Biomed Pharmacother. 2016; 82: 547-554. doi:10.1016/j.biopha.2016.05.036.
38.    SM Bhanushali, KM Modh, IS Anand, CN Patel , JB Dave. Novel Approaches for Diabetes Mellitus: A Review. Research J. Pharmacology and Pharmacodynamics. 2010; 2(2): 141-147.
39.    Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care. 2003; 26(10): 2929-2940. doi:10.2337/diacare.26.10.2929.
40.    Kavita Chandramore. Review on Dipeptidyl Peptidase IV Inhibitors as a Newer Target for Diabetes Mellitus Treatment. Asian J. Pharm. Res. 2017; 7(4): 230-238.
41.    Ankita, Keerti Bhardwaj, Navneet Khurana, Ashish Sutte, Gopal Khatik. Identification of Dipeptidyl peptidase-4 (DPP-4) inhibitors as Potential Antidiabetic agents using Molecular docking study. Research J. Pharm. and Tech. 2020; 13(11): 5257-5262. doi: 10.5958/0974-360X.2020.00919.1
42.    Charron MJ, Katz EB, Olson AL. GLUT 4 gene regulation and manipulation. J Biol Chem. 1999; 274: 3253-3256. doi:10.1074/jbc.274.5.3253.





Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available