Author(s):
Reetesh Kumar Rai, Sudhindra Prathap, Arbind Kumar Chaudhary, Azfar Mateen
Email(s):
arbindkch@gmail.com
DOI:
10.52711/0974-360X.2026.00116
Address:
Reetesh Kumar Rai1, Sudhindra Prathap2, Arbind Kumar Chaudhary3, Azfar Mateen4,
¹Associate Professor, Department of Pharmacology, MRA Medical College, Ambedkar Nagar, Uttar Pradesh, India.
2Assistant Professor, Department of Pharmacology, SDM College of Medical Sciences and Hospital, Dharwad, Karnataka, India.
3Assistant Professor, Department of Pharmacology, Government Erode Medical College, Erode, Tamil Nadu, India.
4Associate Professor, Department of Forensic Medicine, MRA Medical College, Ambedkar Nagar, Uttar Pradesh, India.
*Corresponding Author
Published In:
Volume - 19,
Issue - 2,
Year - 2026
ABSTRACT:
Persistent elevation of blood glucose resulting from inadequate insulin secretion, impaired insulin action, or both, defines diabetes mellitus (DM), a chronic disorder of metabolism. Current oral hypoglycemic drugs have safety limitations and incomplete efficacy, highlighting the need for novel agents with multimodal actions. Pyridazinone derivatives possess cardioprotective, antioxidant, and anti-inflammatory activities, but their antidiabetic potential remains underexplored. This study evaluated a pyridazinone derivative in alloxan-induced diabetic rats. Animals were divided into five groups: normal control, diabetic control, glipizide (10 mg/kg), and pyridazinone (30 or 60 mg/kg) administered orally for 28 days. Key assessments included fasting glucose, serum insulin, HOMA indices, lipid profile, hepatic glycogen, enzyme activities, oxidative stress markers (MDA, SOD, CAT, GSH), cytokines (TNF-a, IL-6, CRP), liver/kidney function, and histopathology. Pyridazinone significantly reduced hyperglycemia, improved insulin sensitivity, corrected dyslipidemia, restored hepatic metabolism, and enhanced antioxidant and anti-inflammatory defenses without organ toxicity. Histology confirmed protection of liver and pancreas. These findings support pyridazinone as a promising antidiabetic candidate.
Cite this article:
Reetesh Kumar Rai, Sudhindra Prathap, Arbind Kumar Chaudhary, Azfar Mateen. Therapeutic Potential of a Novel Pyridazinone Derivative in Modulating Lipid and Carbohydrate Metabolism. Research Journal of Pharmacy and Technology. 2026;19(2):811-9. doi: 10.52711/0974-360X.2026.00116
Cite(Electronic):
Reetesh Kumar Rai, Sudhindra Prathap, Arbind Kumar Chaudhary, Azfar Mateen. Therapeutic Potential of a Novel Pyridazinone Derivative in Modulating Lipid and Carbohydrate Metabolism. Research Journal of Pharmacy and Technology. 2026;19(2):811-9. doi: 10.52711/0974-360X.2026.00116 Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-45
REFERENCES:
1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183: 109119. doi:10.1016/j.diabres.2021.109119. PMID:34879977.
2. Tandon N, Anjana RM, Mohan V, Kaur T, Afshin A, Ong K, et al. The increasing burden of diabetes and variations among the states of India: the Global Burden of Disease Study 1990–2016. Lancet Glob Health. 2018; 6(12): e1352–62. doi:10.1016/S2214-109X(18)30387-5. PMID:30219315.
3. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018; 14(2): 88–98. doi:10.1038/nrendo.2017.151. PMID:29219149.
4. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2021; 70(7): 1487–99. doi:10.2337/dbi21-0001. PMID:34167902.
5. Tangvarasittichai S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 2015; 6(3): 456–80. doi:10.4239/wjd.v6.i3.456. PMID:25789182.
6. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004; 27(3): 813–23. doi:10.2337/diacare.27.3.813. PMID:14988310.
7. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011; 11(2): 98–107. doi:10.1038/nri2925. PMID:21233852.
8. Bhatia R, Narang A, Kumar A. Pyridazinone derivatives: recent developments in medicinal chemistry. Eur J Med Chem. 2020; 200: 112482. doi:10.1016/j.ejmech.2020.112482. PMID: 32473908.
9. Hameed A, Al-Rashida M, Uroos M, Ali S, Khan KM, Khan A, et al. Pyridazinones as biologically active scaffolds. Eur J Med Chem. 2018; 157: 339–400. doi:10.1016/j.ejmech.2018.07.065. PMID:30081363.
10. Hussain M, Firdous S, Shafiullah M, Khan IU, Shahid N, Khan S. Therapeutic potential of pyridazinone-based derivatives: a review. Curr Med Chem. 2021; 28(7): 1365–90. doi:10.2174/0929867327666200915160928. PMID:32935791.
11. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem. 1969; 6(1): 24–7. doi:10.1177/000456326900600108.
12. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974; 20(4): 470–5. doi:10.1093/clinchem/20.4.470.
13. Bucolo G, David H. Quantitative determination of serum triglycerides by enzyme methods. Clin Chem. 1973; 19(5): 476–82. doi:10.1093/clinchem/19.5.476.
14. Lopes-Virella MF, Stone P, Ellis S, Colwell JA. Cholesterol determination in HDL separated by different methods. Clin Chem. 1977; 23(5): 882–4. doi:10.1093/clinchem/23.5.882.
15. Friedewald WT, Levy RI, Fredrickson DS. Estimation of LDL cholesterol concentration in plasma without ultracentrifuge. Clin Chem. 1972; 18(6): 499–502. doi:10.1093/clinchem/18.6.499.
16. Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem. 1959; 234(3): 466–8. PMID:13641241.
17. Carroll NV, Longley RW, Roe JH. Determination of glycogen in liver and muscle using anthrone reagent. J Biol Chem. 1956; 220(2): 583–93. PMID:13331917.
18. Brandstrup N, Kirk JE, Bruni C. Hexokinase and phosphoglucoisomerase activities in vascular tissues. J Gerontol. 1957; 12(2): 166–71. doi:10.1093/geronj/12.2.166.
19. Koide H, Oda T. Pathological occurrence of glucose-6-phosphatase in serum in liver disease. Clin Chim Acta. 1959; 4(4): 554–61. doi:10.1016/0009-8981(59)90165-2.
20. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by TBARS. Anal Biochem. 1979; 95(2): 351–8. doi:10.1016/0003-2697(79)90738-3.
21. Marklund S, Marklund G. Assay for superoxide dismutase based on autoxidation of pyrogallol. Eur J Biochem. 1974; 47(3): 469–74. doi:10.1111/j.1432-1033.1974.tb03714.x.
22. Aebi H. Catalase in vitro. Methods Enzymol. 1984; 105: 121–6. doi:10.1016/S0076-6879(84)05016-3.
23. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 82(1): 70–7. doi:10.1016/0003-9861(59)90090-6.
24. Reitman S, Frankel S. Colorimetric method for transaminases. Am J Clin Pathol. 1957; 28(1): 56–63. doi:10.1093/ajcp/28.1.56.
25. Fawcett JK, Scott JE. Rapid and precise method for urea determination. J Clin Pathol. 1960; 13(2): 156–9. doi:10.1136/jcp.13.2.156.
26. Jaffe M. Reaction of picric acid in urine and a new reaction of creatinine. Z Physiol Chem. 1886;10:391–400.
27. Hamadjida A, Mbomo REA, Minko SE, Ntchapda F, Kilekoung Mingoas JP, Nnanga N. Antioxidant and anti-inflammatory effects of Boswellia dalzielii and Hibiscus sabdariffa extracts in alloxan-induced diabetic rats. Metabol Open. 2024; 21: 100278. doi:10.1016/j.metop.2024.100278. PMID:38455229.
28. Bukhari HA, Afzal M, Al-Abbasi FA, Sheikh RA, Alqurashi MM, Bawadood AS, et al. In vivo and computational investigation of butin against alloxan-induced diabetes. Sci Rep. 2024; 14: 20633. doi:10.1038/s41598-024-71577-y. PMID:39232184.
29. Guo J, Liu H, Zhao D, et al. Glucose-lowering effects of orally administered superoxide dismutase in type 2 diabetic model rats. npj Sci Food. 2022; 6: 36. doi:10.1038/s41538-022-00151-w.
30. Aslam B, Hussain A, Sindhu ZUD, Nigar S, Jan IU, Alrefaei AF, et al. Polyphenols-rich polyherbal mixture attenuates metabolic disturbances in alloxan-induced diabetic rats. J Appl Anim Res. 2023; 51(1): 515–23. doi:10.1080/09712119.2023.2230754.
31. Alrefaei AF, Elbeeh ME. Hepatoprotective effects of Glycyrrhiza glabra in diabetic male rats: liver function and histopathology. Biology. 2025; 14(3): 307. doi:10.3390/biology14030307.
32. Abdullah KM, Abul Qais F, Hasan H, Naseem I. Anti-diabetic study of vitamin B6 in alloxan-induced diabetic rats. Toxicol Res (Camb). 2019; 8(4): 568–79. doi:10.1039/c9tx00089e. PMID:31741732.
33. Alharbi KS, Nadeem MS, Afzal O, Alzarea SI, Altamimi ASA, Almalki WH, et al. Gingerol, a natural antioxidant, attenuates hyperglycemia in diabetic rats. Metabolites. 2022; 12(12): 1274. doi:10.3390/metabo12121274. PMID:36557312.