Author(s): Arif Al Iman, Annisa Septianti Sekar Kinasih, Defri Rizaldy, Sukrasno

Email(s): 30724011@mahasiswa.itb.ac.id , septisekar@student.ub.ac.id , rizaldy@itb.ac.id , sukras@itb.ac.id

DOI: 10.52711/0974-360X.2026.00108   

Address: Arif Al Iman1, Annisa Septianti Sekar Kinasih2, Defri Rizaldy3, Sukrasno4*
1Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Indonesia.
2Pharmacy, Faculty of Medicine, Brawijaya University, Indonesia.
3Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Indonesia.
4Department of Pharmaceutical Biology, School of Pharmacy, Bandung Institute of Technology, Indonesia.
*Corresponding Author

Published In:   Volume - 19,      Issue - 2,     Year - 2026


ABSTRACT:
Coffee beans possess strong antioxidant properties, making them attractive candidates for anti-aging applications. This study investigates the optimal extraction conditions to enhance the antioxidant yield and evaluates the anti-aging potential of the major compounds through in silico analysis. Extraction was optimized using Response Surface Methodology (RSM), with extraction time and solvent ratio as independent variables. The optimization aimed to maximize yield, total phenolic content (TPC), and antioxidant activity assessed by the DPPH assay. The best extraction conditions were obtained at 42.98 minutes and a solvent ratio of 5.77g/ml. Under these conditions, TLC-densitometry identified chlorogenic acid and caffeine as the major components. Molecular docking demonstrated that chlorogenic acid exhibited strong binding affinity to key skin-aging-related proteins, including collagen type I (3EJH), MMP-1 (2D1N), elastase (3HGN), MMP-9 (1GKC), and TNF-a (2AZ5). These interactions, primarily stabilized by hydrogen bonds and Van der Waals forces, support its role as a potent anti-aging compound. The findings suggest that chlorogenic acid is a promising natural candidate for developing anti-aging treatments. By combining green extraction techniques with computational validation, this study contributes to the sustainable development of cosmetic and nutraceutical applications. Overall, the research provides new insights into the health-promoting potential of coffee, paving the way for future in vivo studies and functional food innovations.


Cite this article:
Arif Al Iman, Annisa Septianti Sekar Kinasih, Defri Rizaldy, Sukrasno. Optimatization of Antioxidant Extraction from Coffee Bean using Ultrasonic Assisted Method and In Silico Test for Antiaging Activity of Major Components. Research Journal of Pharmacy and Technology. 2026;19(2):744-5. doi: 10.52711/0974-360X.2026.00108

Cite(Electronic):
Arif Al Iman, Annisa Septianti Sekar Kinasih, Defri Rizaldy, Sukrasno. Optimatization of Antioxidant Extraction from Coffee Bean using Ultrasonic Assisted Method and In Silico Test for Antiaging Activity of Major Components. Research Journal of Pharmacy and Technology. 2026;19(2):744-5. doi: 10.52711/0974-360X.2026.00108   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-37


REFERENCES:
1.    Sub-Directorate of Plantation Crop Statistics. Coffee Statistics of Indonesia 2021. Jakarta: Statistics Indonesia; 2022.
2.    Sari AP, Iqbal M, Rahayu ID, Triyandi R. Comparison of Antioxidant Levels of Robusta Coffee (Coffea canephora) and Arabica Coffee (Coffea arabica). Agromedicine. 2023 Jan 1;10(1):61-4.
3.    Halliwell B. How to characterize an antioxidant: an update. Biochem Soc Symp. 1995;61:73-101. doi:10.1042/bss0610073.
4.    Happyana N, Pratiwi A, Hakim EH. Metabolite profiles of the green beans of Indonesian Arabica coffee varieties. Int J Food Sci. 2021; 2021:1-9. doi:10.1155/2021/5782578.
5.    Nakatani N, Kayano SI, Kikuzaki H, Sumino K, Katagiri K, Mitani T. Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.). J Agric Food Chem. 2000 Nov 1;48(11):5512-6. doi:10.1021/jf000422s.
6.    Farah A, Donangelo CM. Phenolic compounds in coffee. Braz J Plant Physiol. 2006 Jan; 18(1): 23-36. doi:10.1590/S1677-04202006000100003.
7.    Alonso-Riaño P, Diez MTS, Blanco B, Beltrán S, Trigueros E, Benito-Román O. Water ultrasound-assisted extraction of polyphenol compounds from brewer’s spent grain: Kinetic study, extract characterization, and concentration. Antioxidants. 2020 Mar;9(3):268. doi:10.3390/antiox9030265.
8.    Lajoie L, Fabiano-Tixier AS, Chemat F. Water as green solvent: Methods of solubilisation and extraction of natural products—past, present and future solutions. Pharmaceuticals. 2022 Dec; 15(12): 1530. doi:10.3390/ph15121507.
9.    Iman A Al, Sukrasno S, Rizaldy D, Yanti NLPKM. Comparison of flavonoid, phenol content, and antioxidant activity in kepok banana peel (Musa acuminata × balbisiana) using different extraction methods. J Sci Health. 2023 Jun 1; 5(6): 1010-6. doi:10.25026/jsk.v5i6.2134.
10.    Torres PHM, Sodero ACR, Jofily P, Silva-Jr FP. Key topics in molecular docking for drug design. Int J Mol Sci. 2019 Sep;20(18):4574. doi:10.3390/ijms20184574.
11.    Prieto-Martínez FD, Arciniega M, Medina-Franco JL. Molecular docking: Recent advances and challenges. TIP Rev Esp Cienc Quím Biol. 2018 May;21:0-23. doi:10.22201/fesz.23958723e.2018.0.143.
12.    Wissam Z, Ali A, Dimah S, Sahar A. Optimization of phenolics and antioxidants extraction from Centaurium erythraea using response surface methodology. Res J Pharm Technol. 2021 Dec; 14(12): 6181-7. doi:10.52711/0974-360X.2021.01116.
13.    Benarima A, Raache M, Rachid K, Belaiche Y, Laouini SE. Optimization of ultrasonic-assisted extraction of flavonoids from Moringa oleifera leaves using response surface methodology. Asian J Res Chem. 2021 Jan; 14(1): 363-7. doi:10.52711/0974-4150.2021.00062.
14.    Khat-udomkiri N, Win SM. Microwave-assisted butylene glycol extraction: An environmentally friendly method for isolating bioactive compounds from coffee silverskin with antioxidant, anti-tyrosinase, and anti-melanogenic effects. Ind Crops Prod. 2025;226:120647. doi:10.1016/j.indcrop.2025.120647.
15.    Biratu G, Woldemariam HW, Gonfa G. Optimization of pectin yield extracted from coffee Arabica pulp using response surface methodology. Heliyon. 2024 Aug; 10(8): e29636. doi:10.1016/j.heliyon.2024.e29636.
16.    Thai LQ, Niwat C, Qin S, Konsue N. Supercritical carbon dioxide and ethanol-assisted extraction of bioactive compounds from Bourbon, Catimor, and Caturra coffee pulp for maximized antioxidant and therapeutic properties. Future Foods. 2024; 9: 100381. doi:10.1016/j.fufo.2024.100381.
17.    Myo H, Khat-udomkiri N. Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. Ultrason Sonochem. 2022 Jul; 89: 106127. doi:10.1016/j.ultsonch.2022.106127.
18.    Kashksara KM, Tavakolipour H, Mokhtarian M. Effects of atmospheric-thermosonication process on phenolic compounds extraction, extraction productivity and antioxidant activity of freeze-dried green tea and green coffee aqueous extracts. J Agric Food Res. 2023; 12: 100582. doi:10.1016/j.jafr.2023.100582
19.    F P, Hosseinimehr S, Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Iran J Pharmacol Ther. 2006; 5(2): 87-95.
20.    Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958 Apr; 181: 1199-2000.
21.    Hosen SM. Drug Bank: An update-resource for in silico drug discovery. Res J Pharm Dosage Forms Technol. 2012 Feb; 4(1): 45-50.
22.    Asghari F, Hossieni R, Asnaashari S, Tazarvi Z, Lotfipour F. Phenolic content and antioxidant activity in different extracts of Prunus domestica L. fruit. Adv Pharm Bull. 2016; 6(2): 285-92. doi:10.15171/apb.2016.038.
23.    Cacace JE, Mazza G. Mass transfer process during extraction of phenolic compounds from milled berries. J Food Eng. 2003 Jul; 59(4): 379-89. doi:10.1016/S0260-8774(02)00497-1.
24.    Vinatoru M, Mason TJ, Calinescu I. Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. TrAC Trends Analyt Chem. 2017 Aug; 97: 159-78. doi:10.1016/j.trac.2017.09.002.
25.    Zhang QW, Lin LG, Ye WC. Techniques for extraction and isolation of natural products: A comprehensive review. Chin Med. 2018; 13(1): 20. doi:10.1186/s13020-018-0177-x.
26.    Kim HH, Cho S, Lee S, Kim KH, Cho KH, Eun HC, Chung JH. Photoprotective and anti-aging effects of topical Coffea arabica seed extract in human skin. Skin Pharmacol Physiol. 2005; 18(5): 255-61. doi:10.1159/000087104.
27.    Lee SY, Baek N, Nam TG. Natural, semisynthetic and synthetic tyrosinase inhibitors. J Enzyme Inhib Med Chem. 2016 May; 31(1): 1-13. doi:10.3109/14756366.2016.1163540.
28.    Babbar N, Oberoi HS, Sandhu SK. Influence of different solvents in extraction of phenolic compounds from vegetable residues and their evaluation as natural sources of antioxidants. J Food Sci Technol. 2014; 51(10): 2568-75. doi:10.1007/s13197-012-0754-4.
29.    Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem. 2005; 53(10): 4290-302. doi:10.1021/jf0502698.
30.    Sun T, Ho CT. Antioxidant activities of buckwheat extracts. Food Chem. 2005; 90(4): 743-9. doi:10.1016/j.foodchem.2004.04.035.
31.    Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K. Methods for testing antioxidant activity. Analyst. 2002;127(1):183-98. doi:10.1039/B009171P.
32.    Spigno G, Tramelli L, De Faveri DM. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng. 2007; 81(1): 200-8. doi:10.1016/j.jfoodeng.2006.10.021.
33.    Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic. 1965; 16(3): 144-58.
34.    Brand-Williams W, Cuvelier ME, Berset CLWT. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995 Jan; 28(1): 25-30. doi:10.1016/S0023-6438(95)80008-5.
35.    Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and flavonoid contents of whole plant extracts of Torilis leptophylla L. BMC Complement Altern Med. 2012; 12: 221. doi:10.1186/1472-6882-12-221.
36.    Stalikas CD. Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci. 2007;30(18):3268-95. doi:10.1002/jssc.200700261.
37.    Dorta E, Lobo MG, Gonzalez M. Using drying treatments to stabilize mango peel and seed: effect on antioxidant activity. LWT Food Sci Technol. 2012 Jan; 45(1): 261-8. doi:10.1016/j.lwt.2011.07.027.
38.    Li Y, Guo C, Yang J, Wei J, Xu J, Cheng S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem. 2006; 96(2): 254-60. doi:10.1016/j.foodchem.2005.02.033.
39.    He ZD, Qiao CF, Han QB, Cheng CL, Xu HX, But PP, Shaw PC. Authentication and quantitative analysis on the chemical profile of radix astragali by HPLC and LC-MS. J Agric Food Chem. 2005;53(13):4744-9. doi:10.1021/jf050057z.
40.    Li HB, Wong CC, Cheng KW, Chen F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT Food Sci Technol. 2008; 41(3): 385-90. doi:10.1016/j.lwt.2007.03.011.
41.    Yen GC, Chen HY. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem. 1995 Jan; 43(1): 27-32. doi:10.1021/jf00049a007.
42.    Yildirim A, Mavi A, Kara AA. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem. 2001 Oct; 49(8): 4083-9. doi:10.1021/jf0103572.
43.    Wang SY, Jiao H. Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry. J Agric Food Chem. 2000; 48(11): 5672-6. doi:10.1021/jf0007652.
44.    Velioglu YS, Mazza G, Gao L, Oomah BD. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem. 1998 Oct; 46(10): 4113-7. doi:10.1021/jf9801973.
45.    Soares JR, Dinis TCP, Cunha AP, Almeida LM. Antioxidant activities of some extracts of Thymus zygis. Free Radic Res. 1997; 26(5): 469-78. doi:10.3109/10715769709084484.
46.    Wojdyło A, Oszmiański J, Czemerys R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007 Jan; 105(3): 940-9. doi:10.1016/j.foodchem.2007.04.038.
47.    Gülçin İ, Oktay M, Küfrevioğlu Öİ, Aslan A. Determination of antioxidant activity of lichen Cetraria islandica (L.) Ach. J Ethnopharmacol. 2002 Jan; 79(3): 325-9. doi:10.1016/S0378-8741(01)00396-8.
48.    Choi CW, Kim SC, Hwang SS, Choi BK, Ahn HJ, Lee MY, Park SH, Kim SK. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 2002 Nov; 163(6): 1161-8. doi:10.1016/S0168-9452(02)00332-1. 
49.    Sun T, Powers JR, Tang J. Antioxidant activity and quality of asparagus affected by microwave-circulated water combination and conventional sterilization. Food Chem. 2007 Jan; 100(2): 813-9. doi:10.1016/j.foodchem.2005.10.038. 

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available