Author(s):
Erna Prawita Setyowati, Diah Tri Utami, Sari Haryanti, Rony Abdi Syahputra, Aminah Dalimunthe, Yahdiana Harahap, Bonglee Kim
Email(s):
erna_prawita@ugm.ac.id
DOI:
10.52711/0974-360X.2026.00095
Address:
Erna Prawita Setyowati1*, Diah Tri Utami2, Sari Haryanti3, Rony Abdi Syahputra4, Aminah Dalimunthe4, Yahdiana Harahap5, Bonglee Kim6
1Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
2Department of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Jambi, Indonesia.
3Medicinal Plant and Traditional Medicine Research and Development Centre, Ministry of Health, Indonesia. 4Faculty of Pharmacy, University of North Sumatra, Indonesia.
5Faculty of Pharmacy, University of Indonesia, Indonesia.
6Kyung Hee University, Republic of Korea.
*Corresponding Author
Published In:
Volume - 19,
Issue - 2,
Year - 2026
ABSTRACT:
Research on the antioxidant and cytotoxic activity of Litsea cubeba (LC) extracts on B1610, 3T3, and Vero cell lines has been conducted. This study also analyzed the compound content of LC peel, fruit, and leaf extracts using the HRMS method. This research is expected to determine the most potent and safe extract for use as a cosmetic agent, specifically a whitening agent from the Litsea cubeba (Lour.) Pers plant. The results showed that using the DPPH and BCB methods, the LC leaf extract provided the most substantial IC50 results. Using the ABTS method, the most substantial results were obtained from the LC fruit extract. Compared with other LC cell parts, the LC leaf extract had the highest potential cytotoxic activity with an IC50 value of 35.81±1.85µg/ml. The SI values of 8.48 and 12.73, respectively, indicate that the extract is more selective against B16F10 melanoma cells than normal Vero and 3T3 cells. HRMS results showed that the extracts from the three LC parts contained approximately 600-650 compounds. There were similarities in the compound content, namely 9-Oxo-10(E), 12(E)-octadecadienoate, and (-)-Caryophyllene oxide, which were in the range of 0.5-1.4%. The LC bark extract gave a selectivity index <1, possibly due to the high content of the toxic compound gaxsolidine (7.78%).
Cite this article:
Erna Prawita Setyowati, Diah Tri Utami, Sari Haryanti, Rony Abdi Syahputra, Aminah Dalimunthe, Yahdiana Harahap, Bonglee Kim. Analysis of Compound content in Bark, Fruit and Leaves of Listea cubeba (LOUR.) Pers using HRMS: Antioxidant and Cytotoxic activity against B16F10, 3T3 and Vero Cells. Research Journal of Pharmacy and Technology. 2026;19(2):651-6. doi: 10.52711/0974-360X.2026.00095
Cite(Electronic):
Erna Prawita Setyowati, Diah Tri Utami, Sari Haryanti, Rony Abdi Syahputra, Aminah Dalimunthe, Yahdiana Harahap, Bonglee Kim. Analysis of Compound content in Bark, Fruit and Leaves of Listea cubeba (LOUR.) Pers using HRMS: Antioxidant and Cytotoxic activity against B16F10, 3T3 and Vero Cells. Research Journal of Pharmacy and Technology. 2026;19(2):651-6. doi: 10.52711/0974-360X.2026.00095 Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-24
REFERENCES:
1. The Plant List. 2013. Collaboration between the Royal Botanic Gardens, Kew and Missouri Botanical Garden. Version 1.1. http://www.plantlist.org.
2. The International Plant Names Index (IPNI). A Collaboration Between The Royal Botanic Gardens, Kew, The Harvard University Herbaria and The Australian National Herbarium. http:// www.ipni.org/.
3. Himmat Singh Chawra, Gaurav Gupta, Santosh Kumar Singh, Sachchidanand Pathak, Sarita Rawat, Anurag Mishra, Ritu M Gilhotra. Phytochemical constituents, Ethno medicinal properties and Applications of Plant: Litsea glutinosa (Lour.) C.B. Robinson (Lauraceae). Research Journal of Pharmacy and Technology. 2021; 14(11): 6113-8. doi: 10.52711/0974-360X.2021.01062
4. Chen, Y., Y. Wang, G. Zhou, P. Li, and S. Zhang. Key mediators modulating TAG synthesis and accumulation in woody oil plants. Afr. J. Biotechnol. 2008; 7(25): 4743-4749.
5. Linlin Si, Yicun Chen, Xiaojiao Han, Zhiyong Zhan, Shengping Tian, Qinqin Cui and Yangdong Wang. Chemical Composition of Essential Oils of Litsea cubeba Harvested from Its Distribution Areas in China. Molecules. 2012; 17: 7057-7066; doi:10.3390/molecules17067057 molecules
6. Yao, Liu., Ren, Huanhuan., Li, Kehu., 2024., Litsea cubeba essential oil: Extraction, chemical composition, antioxidant and antimicrobial properties, and applications in the food industry. J. Food Sci. 2024; 89: 4583–4603, DOI: 10.1111/1750-3841.17236
7. Aminah Dalimunthe, Mega Carensia Gunawa, Zahirah Dhiya Utari, Muhammad Riza Dinata, Princella Halim, Nathasya Estherina S. Pakpahan, Alex Insandus Sitohang, M.Andriansyah Sukarno, Yuandani, Yahdiana Harahap, Erna Prawita Setyowati, Moon Nyeo Park, Syaratul Dalina Yusoff, Satirah Zainalabidin, Arya Tjipta Prananda, Mohd Kaisan Mahadi, Bonglee Kim, Urip Harahap and Rony Abdi Syahputra, 2024, In-depth analysis of lupeol: delving into the diverse pharmacological profile. Front. Pharmacol. 2024; 15 https://doi.org/10.3389/fphar.2024.1461478
8. Kementerian Kesehatan RI, Direktorat Bina Produksi dan Distribusi kefarmasian, Direktorat Jenderal Bina Kefarmasian dan Alat Kesehatan. 2015. Materia Kosmetika Bahan Alam Indonesia (MKBAI). Jakarta : Kementerian Kesehatan RI.
9. European Comission Health and Consumers. Cosmetic-Cosing. http://ec.europa.eu/consumers/cosmetics/cosing/index.cfm?fuseaction=search.results.15. Maret 2025.
10. Eka Indra Setyawan, Erna Prawita Setyowati, Abdul Rohman, Akhmad Kharis Nugroho. Simultaneous Determination of Epigallocatechin Gallate, Catechin, and Caffeine from Green Tea Leaves (Camellia sinensis L) Extract by RP-HPLC. Research J. Pharm. and Tech. 2020; 13(3): 1489-1494. doi: 10.5958/0974-360X.2020.00271.1
11. Siddartha Baliyan, Riya Mukherjee, Anjali Priyadarshini, Arpana Vibhuti, Archana Gupta, Ramendra Pati Pandey, Chung-Ming Chang. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa, Molecules. 2022; (4): 1326. doi: 10.3390/molecules27041326
12. Aziz Mohammad Khan, Seema Bhadauria, Rajesh Yadav. Phytochemical Screening and Antioxidant activity of extract of different parts of Adhatoda vasica. Research J. Pharm. and Tech. 2019; 12(12): 5699-5705. doi: 10.5958/0974-360X.2019.00986.7
13. Igor R Ilyasov, Vladimir L Beloborodov, Irina A Selivanova, Roman P Terekhov. ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways. Int J Mol Sci. 2020; 21(3): 1131. doi: 10.3390/ijms21031131
14. Eka Siswanto Syamsul, Supomo, Siti Jubaidah, Heri Wijaya, Dwi Lestari, Sandeep Poddar. Antioxidant Activity Test of Red Pidada Leaves (Sonneratia caseolaris L.) using ABTS Method (2,2-azinobis-(3-ethylbenzothiazolin)-6-sulfonicacid). Research Journal of Pharmacy and Technology. 2022; 15(9): 3957-1. doi: 10.52711/0974-360X.2022.00663
15. Noacco, Boris Rodenak-Kladniew, Margarita García de Bravo, Guilermo R. Castro, German A. Islan. Simple colorimetric method to determine the in vitro antioxidant activity of different monoterpenes, Analytical Biochemistry. 2018; 555: 59-66. https://doi.org/10.1016/j.ab.2018.06.007
16. D. Shanthi, R. Saravanan. Evaluation of Cytotoxicity of normal Vero and Anticancer Activity of Human Breast Cancer Cell Lines by Aqueous Unripe Fruit Extract of Solanum torvum. Research Journal of Pharmacy and Technology. 2021; 14(7): 3504-8. doi: 10.52711/0974-360X.2021.00607
17. Erna Prawita Setyowati, Purwantiningsih, Fidya Maulina Yulianny Erawan, Suci Rahmanti, Ni’mah Rifka Hanum, Natasya Cendikia Moeksa Devi. Cytotoxic and Antimicrobial Activities of Ethyl Acetate Extract from Fungus Trichoderma reesei strain JCM 2267, Aspergillus flavus strain MC-10-L, Penicillium sp, and Aspergillus fumigatus Associated with Marine Sponge Stylissa flabelliformis. Research Journal of Pharmacy and Technology. 2021; 14(10): 5126-2. doi: 10.52711/0974-360X.2021.00893
18. Zilles JC, dos Santos FL, Kulkamp-Guerreiro IC, Contri RV. Biological activities and safety data of kojic acid and its derivatives: A review. Experimental Dermatology [Internet]. 2022; 31(10): 1500–21. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/exd.14662
19. Vale JA do, Rodrigues MP, Lima ÂMA, Santiago SS, Lima GD de A, Almeida AA, et al. Synthesis of cinnamic acid ester derivatives with antiproliferative and antimetastatic activities on murine melanoma cells. Biomedicine and Pharmacotherapy [Internet]. 2022 Apr 1 [cited 2025 Mar 2]; 148: 112689. Available from: https://www.sciencedirect.com/science/article/pii/S0753332222000774
20. Bogo D, Alcântara Imc, Alcantara Gb, Micheletti Ac, Honda N, Matos Mdfc. Cytotoxicity of norstictic acid derivatives, a depsidone from Ramalina anceps Nyl. Turkish Journal of Chemistry. 2024; 48(5): 748–55. Available from: https://journals.tubitak.gov.tr/chem/vol48/iss5/5
21. Rukmani Krishnamurthy, Anitha Rajagopal, R Subashini, Harshni V, Shruthi P.S. Comparative Study of 3T3 Fibroblast cells grown in the normal and increased glucose conditions under the influence of Aloe vera and Costus pictus. Research Journal of Pharmacy and Technology. 2023; 16(11): 4271-8. doi: 10.52711/0974-360X.2023.00854
22. Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, et al. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules [Internet]. 2022 Jan [cited 2025 Mar 2]; 27(23): 8367. Available from: https://www.mdpi.com/1420-3049/27/23/8367
23. Cheng X, Feng D, Lv J, Cui X, Wang Y, Wang Q, et al. Application Prospects of Triphenylphosphine-Based Mitochondria-Targeted Cancer Therapy. Cancers [Internet]. 2023 Jan [cited 2025 Mar 2]; 15(3): 666. Available from: https://www.mdpi.com/2072-6694/15/3/666
24. Siti Jubaidah, Eka Siswanto Syamsul, Supomo, Heri Wijaya, Sandeep Poddar. Formulation cream from extract of red pidada leaves (Sonneratia caseolaris L.) as a sunscreen and analysis of active compounds with Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS) method. Research Journal of Pharmacy and Technology. 2023; 16(2): 781-5. doi: 10.52711/0974-360X.2023.00134
25. Djohan, Bungaran Sihombing, Sahna Ferdinand. Exploring Nanoherbal Tomato: Assessing its Potential as an α-Glucosidase and α-Amylase Inhibitor, Antioxidant and Metabolite Profiling using LC-HRMS. Research Journal of Pharmacy and Technology. 2024; 17(10): 4953-0. doi: 10.52711/0974-360X.2024.00762
26. Adriani Adriani, Noorhamdani Noorhamdani, Tri Ardyati, Sri Winarsih. Non-targeted screening with LC-HRMS and In-Silico Study on Diabetic activity of ethyl acetate extract of Sanrego (Lunasia amara Blanco). Research Journal of Pharmacy and Technology. 2022; 15(3): 1077-4. doi: 10.52711/0974-360X.2022.00180
27. Yanrong Su, Faxu Li, Xiangxiang Xiao, Huizhen Li, Dali Wang, JingYou. Ecological Risk of Galaxolide and Its Transformation Product Galaxolidone: Evidence from the Literature and A Case Study inGuangzhou Waterways, Environmental Science: Processes and Impacts. 2023; 25(8). Doi: 10.1039/D3EM00139C
28. V L Marlatt, V L Trudeau, J P Sherry, C D Metcalfe, 2010, Interaction of Galaxolide® with the human and trout estrogen Receptor. 2010; 408(24): 6158-64. doi: 10.1016/j.scitotenv.2010.09. 027.