Author(s): Amita G. Dhadphale, Kamini J. Donde

Email(s): kaminidonde@ruiacollege.edu

DOI: 10.52711/0974-360X.2026.00094   

Address: Amita G. Dhadphale, Kamini J. Donde
Department of Chemistry, Ramnarain Ruia, Autonomus College, L. N. Road, Matunga (East), Mumbai - 400019, India.
*Corresponding Author

Published In:   Volume - 19,      Issue - 2,     Year - 2026


ABSTRACT:
This study investigates the potential of binary mixtures of gliclazide (GCL) and Vitamin C i.e. ascorbic acid (ASC) in various molar ratios to address the minimal aqueous solubility and dissolution characteristics of GCL. The results reveal that GCL and ASC form a eutectic mixture, at a 1:1 molar ratio exhibiting the eutectic melting temperature (TEut) at 148.60°C, as determined through phase diagram construction employing differential scanning calorimetry (DSC) and thermo-microscopy. The presence of eutectic formation was confirmed by powder X-ray diffraction (PXRD) and furrier transform infrared (FTIR) spectroscopy indicating the absence of molecular interaction within the two components in the solid state. GCL-ASC eutectic mixture significantly enhanced the solubility, wettability, and dissolution rate of GCL, with ASC serving as a water-soluble carrier. Furthermore, in the presence of excipients, the GCL-ASC mixture exhibited a superior dissolution rate compared to pure GCL. These findings underscore the potential of eutectic mixtures as a promising strategy for improving the solubility and dissolution performance of poorly water-soluble drugs like gliclazide, highlighting the importance of this work in advancing pharmaceutical formulation and bioavailability enhancement.


Cite this article:
Amita G. Dhadphale, Kamini J. Donde. Preparation and Characterization of Gliclazide - Vitamin C Eutectic Mixture for Improved Dissolution Rate. Research Journal of Pharmacy and Technology. 2026;19(2):643-0. doi: 10.52711/0974-360X.2026.00094

Cite(Electronic):
Amita G. Dhadphale, Kamini J. Donde. Preparation and Characterization of Gliclazide - Vitamin C Eutectic Mixture for Improved Dissolution Rate. Research Journal of Pharmacy and Technology. 2026;19(2):643-0. doi: 10.52711/0974-360X.2026.00094   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-23


REFERENCES:
1.    Jagtap VA. Talele AN. Bendale AR. Narkhede S. Jadhav A. Vidyasagar G. Solubility Enhancement of Pioglitazone by Using Poloxamer (188 and 407) with the Help of Kneading Method. Research Journal of Pharmacy and Technology. 2010; 3 (4): 1152-1157.
2.    Markad MH. Mankar SD. Review on: Solubility Enhancement of Poorly Water-Soluble Drugs. Asian Journal of Research in Pharmaceutical Sciences. 2022; 12(3): 231-8. doi.org/10.52711/2231-5659.2022.00041 
3.    Tawar M. Raut K. Chaudhari R. Jain N. Novel Methods to Enhance Solubility of Water Insoluble Drugs. Asian Journal of Research in Pharmaceutical Sciences. 2022; 12(2): 151-6.doi.org/ 10.52711/2231-5659.2022.00026 
4.    Liu X. Liu X. Feng X. Feng X. Williams Iii RO. Zhang F. Zhang F. Characterization of amorphous solid dispersions. Journal of Pharmaceutical Investigation. 2018; 48: 19–41. doi.org/10.1007/ s40005-017-0361-5
5.    Graeser KA. Patterson JE. Zeitler JA. Gordon KC. Rades T. Correlating thermodynamic and kinetic parameters with amorphous stability. European Journal of Pharmaceutical Sciences. 2009; 37: 492–498. https://doi.org/10.1016/ j.ejps.2009.04.005
6.    Vasconcelos T. Sarmento B. Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water-soluble drugs. Drug Discovery Today. 2007; 12(23-24): 1068–1075. https://doi.org/ 10.1016/j.drudis.2007.09.005
7.    Patel RD. Raval MK. Sheth NR. Formation of Diacerein − fumaric acid eutectic as a multi-component system for the functionality enhancement. Journal of Drug Delivery Science and Technology. 2020; 58: 1773-2247. https://doi.org/10.1016/ j.jddst.2020.101562
8.    Abdelkader H. Abdallah OY. Salem H. Alani AW. Alany RG. Eutectic, monotectic and immiscibility systems of nimesulide with water-soluble carriers: phase equilibria, solid-state characterisation and in-vivo/pharmacodynamic evaluation. Journal of Pharmacy and Pharmacology. 2014; 66(10): 1439–1450. https://doi.org/10.1111/jphp.12277
9.    Vakhariya RR. Kumbhar SM. Lade RB. Salunkhe PS. Ubale RH. Dissolution Rate Enhancement of Ramipril by Solid Dispersion Technique. Asian Journal of Pharmaceutical Research. 2020; 10(1): 08-12. doi.org/10.5958/2231-5691.2020.00002.7
10.    Law D. Wang W. Schmitt EA. Long MA. Prediction of poly (ethylene) glycol drug eutectic compositions using an index based on the van't Hoff equation. Pharmaceutical Research. 2002; 19: 315–321. https://doi.org/10.1023/A:1014499119549
11.    Cherukuvada S. Nangia A. Eutectics as improved pharmaceutical materials: design, properties and characterization. Chemical Communications. 2014; 50: 906–923. https://doi.org/10.1039/ C3CC47521B
12.    Hajare AA. Jadhav PR. Improvement of Solubility and Dissolution Rate of Indomethacin by Solid Dispersion in Polyvinyl Pyrrolidone K30 and Poloxomer 188. Asian Journal of Pharmacy and Technology. 2012; 2(3): 116-122.
13.    Asija R. Bhatt S. Asija S. Shah I. Yadav A. Solubility Enhancement of Nebivolol by Solid Dispersion Technique. Asian Journal of Pharmacy and Technology. 2014; 4(3): 134-140.
14.    Sarkar A. Tiwari A. Bhasin PS. Mitra M. Pharmacological and Pharmaceutical Profile of Gliclazide: A Review. Journal of Applied Pharmaceutical Science. 2011; 1(09): 11-19.
15.    Reddy S. Pattabi A. Kumar A. Rajpurohit S. Mukhopadhyay A. Thangam S. Estimation of Gliclazide in Human Plasma by LCMS/MS. Research Journal of Pharmacy and Technology. 2013; 6(9): 985-989.
16.    Rajamma AJ. Sateesha SB. Narode MK. Prashanth VRSS. Karthik AM. Preparation and Crystallographic Analysis of Gliclazide Polymorphs. Indian Journal of Pharmaceutical Sciences. 2015; 77(1): 34-40.doi.org/10.4103/0250-474x.151595
17.    Barzegar-Jalali M. Valizadeh H. Shadbad MRS. Adibkia K. Mohammadi G. Farahani A. Arash Z. Nokhodchi A. Cogrinding as an approach to enhance dissolution rate of a poorly water-soluble drug (gliclazide). Powder Technology. 2010; 197(3): 150–158. https://doi.org/10.1016/j.powtec.2009.09.008
18.    Biswal S. Sahoo J. Murthy PN. Giradkar RP. Avari JG. Enhancement of dissolution rate of gliclazide using solid dispersions with polyethylene glycol 6000. AAPS PharmSciTech. 2008; 9(2): 563–570. https://doi.org/10.1208/s12249-008-9079-z 
19.    Hosmani AH. Thorat YS. Optimization and pharmacodynamic evaluation of solid dispersion of gliclazide for dissolution rate enhancement. Latin American Journal of Pharmacy. 2011; 30(8): 1590–1595.
20.    Moyano JR. Arias-Blanco MJ. Ginés JM. Giordano F. Solid-state characterization and dissolution characteristics of gliclazide-β-cyclodextrin inclusion complexes. International Journal of Pharmaceutics. 1997; 148(2): 211–217. https://doi.org/10.1016/ S0378-5173(96)04848-X
21.    Patil MP. Gaikwad NJ. Characterization of gliclazide– polyethylene glycol solid dispersion and its effect on dissolution. Brazilian Journal of Pharmaceutical Sciences. 2011; 47(1): 161– 166. https://doi.org/10.1590/S1984-82502011000100020
22.    Mason SA. Parker L. Pligt PVD. Wadley GD. Vitamin C supplementation for diabetes management: A comprehensive narrative review. Free Radical Biology and Medicine. 2023; 194: 255-283. https://doi.org/10.1016/j.freeradbiomed.2022.12.003
23.    Mukadam FM. Gawali UP. Pore SM. Effect of Vitamin C on Blood Glucose Levels, Glycosylated Hemoglobin, and Serum Lipid Profile in Patients with Type 2 Diabetes Mellitus: A Prospective Study. Journal of Diabetology. 2024; 15(3): 273-278. doi.org/ 10.4103/jod.jod_32_24
24.    Evtushenko DN. Fateev AV. Khainovsky MA. Polishchuk J. Kokorev OV. Nasibov TF. Gorokhova AV Et al; Intermolecular interactions, regioselectivity, and biological activity of l-ascorbic acid, nicotinic acid and their cocrystal. CrystEngComm. 2024; 26: 6650-6666. https://doi.org/10.1039/D4CE00770K
25.    Palanisamy V. Sanphui P. Palanisamy K. Prakash M. Bansal AK. Design of Ascorbic Acid Eutectic Mixtures with Sugars to Inhibit Oxidative Degradation. Frontiers in Chemistry. 2022; 10: 754269.doi.org/10.3389/fchem.2022.754269
26.    Bhagwat A. Pathan IB. Chishti NAH. Design and optimization of pellets formulation containing curcumin ascorbic acid co-amorphous mixture for ulcerative colitis management. Particulate Science and Technology. 2020; 39(7): 859-867. https://doi.org/ 10.1080/02726351.2020.1848946
27.    Pantwalawalkar J. More H. Bhange D. Patil U. Jadhav N. Novel curcumin ascorbic acid cocrystal for improved solubility. Journal of Drug Delivery Science and Technology. 2021; 61: 102233. https://doi.org/10.1016/j.jddst.2020.102233
28.    Gurav AS. Kulkarni AS. Efavirenz cocrystals with Ascorbic acid: A Strategy for Polymorphic Modification and improvement of Dissolution properties. Research Journal of Pharmacy and Technology. 2024; 17(1): 213-1. doi.org/10.52711/0974-360X.2024.00034
29.    Christina B. Taylor LS. Mauer LJ. Physical stability of l-ascorbic acid amorphous solid dispersions in different polymers: A study of polymer crystallization inhibitor properties. Food Research International. 2015; 76(3): 867-877. doi.org/10.1016/ j.foodres.2015.08.009
30.    Welshman SG. and McGeown MG. A quantitative investigation of the effects on the growth of calcium oxalate crystals on potential inhibitors. British Journal of Urology. 1972; 44(6): 677–680. https://doi.org/10.1111/j.1464-410X.1972.tb10141.x
31.    Saroj KR. Bukkuru S. Patibandla S. Vegiraju V. UV Spectrophotometric Method Development and Validation for the Estimation of Gliclazide in Bulk and Pharmaceutical Dosage Form. Asian Journal of Pharmaceutical Analysis. 2016; 6(3): 143-146.
32.    Jyothi G. Shravan Kumar D. Bhavani P. Anjiah D. Sandeep Kumar G. Eco-Friendly Spectrophotometric Estimation of Gliclazide using Hydrotropic Solubilization Technique. Asian Journal of Pharmaceutical Analysis. 2019; 9(2): 45-48. doi.org/10.5958/2231-5675.2019.00010.3
33.    Inoue T. Hisatsugu Y. Yamamoto R. Suzuki M. Solid–liquid phase behaviour of binary fatty acid mixtures: 1. Oleic acid/stearic acid and oleic acid/behenic acid mixtures. Chemistry and Physics of Lipids. 2004; 127(2): 143–152. doi.org/ 10.1016/j.chemphyslip.2003.09.014
34.    McMonagle CJ. Probert MR. Reducing the background of ultra-low-temperature X-ray diffraction data through new methods and advanced materials. Journal of Applied Crystallography. 2019; 52(2): 445-450.
35.    Padmavathi Y. Akari A. Nayaka RB. Ravi Kumar P. Development and validation of new FTIR method for quantitative analysis of gliclazide in bulk and pharmaceutical dosage forms. Asian J. Research Chem. 2017; 10(3): 377-382. doi.org/10.5958/0974-4150.2017.00064.5
36.    Sanganwar GP. Sathigari S. Babu RJ. Gupta RB. Simultaneous production and co-mixing of microparticles of nevirapine with excipients by supercritical antisolvent method for dissolution enhancement. European Journal of Pharmaceutical Sciences. 2010; 39(1-3): 164–174. doi.org/ 10.1016/j.ejps.2009.11.011
37.    El-Sabawi D. Hamdan II. Improvement of Dissolution Rate of Gliclazide Through Sodium Salt Formation. Dissolution Technologies. 2014; 21(4): 49-55. doi.org/10.14227/DT210414P49
38.    Goldberg AH. Gibaldi M. Kanig JL. Mayersohn M. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures IV: Chloramphenicol—urea system. Journal of Pharmaceutical Sciences. 1966; 55(6): 581–583. doi.org/10.1002/jps.2600550610
39.    Badawy SIF. Hussain MA. Microenvironmental pH modulation in solid dosage forms. Journal of Pharmaceutical Sciences. 2007; 96(5): 948–959. doi.org/ 10.1002/jps.20932
40.    Ojarinta R. Lerminiaux L. Laitinen R. Spray drying of poorly soluble drugs from aqueous arginine solution. International Journal of Pharmaceutics. 2017; 532(1): 289–298. doi.org/ 10.1016/j.ijpharm.2017.09.015
41.    Vasanthavada M. Tong WQT. Joshi Y. Kislalioglu MS. Phase behavior of amorphous molecular dispersions II: role of hydrogen bonding in solid solubility and phase separation kinetics. Pharmaceutical Research. 2005; 22(3): 440–448. doi.org/ 10.1007/s11095-004-1882-y
42.    Buckton G. Bulpett R. Verma N. Surface analysis of pharmaceutical powders: Xray photoelectron spectroscopy (XPS) related to powder wettability. International Journal of Pharmaceutics. 1991; 72(2): 157–162. https://doi.org/10.1016/ 0378-5173(91)90054-R
43.    Ishikawa T. Watanabe Y. Takayama K. Endo H. Matsumoto M. Effect of hydroxypropylmethylcellulose (HPMC) on the release profiles and bioavailability of a poorly water-soluble drug from tablets prepared using macrogol and HPMC. International Journal of Pharmaceutics. 2000; 202(1-2): 173–178. https://doi.org/ 10.1016/S0378-5173(00)00426-9
44.    Kim MS. Kim JS. Hwang SJ. Enhancement of wettability and dissolution properties of cilostazol using the supercritical antisolvent process: effect of various additives. Chemical and Pharmaceutical Bulletin. 2010; 58(2): 230–233. doi.org/10.1248/ cpb.58.230


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available