Author(s): Heriyannis Homenta, Fredine Esther Silvana Rares, Siemona Lydia Eunike Berhimpon, Estelina Irene Benjamin, Sulaiman Faiz Sandjaya, Bellanty Costanty Togas, Julyadharma Julyadharma, Hani Susianti, Dewi Santosaningsih, Noorhamdani Noorhamdani

Email(s): herihomenta@unsrat.ac.id

DOI: 10.52711/0974-360X.2026.00089   

Address: Heriyannis Homenta1*, Fredine Esther Silvana Rares1, Siemona Lydia Eunike Berhimpon2, Estelina Irene Benjamin3, Sulaiman Faiz Sandjaya3, Bellanty Costanty Togas3, Julyadharma Julyadharma4, Hani Susianti5, Dewi Santosaningsih6, Noorhamdani Noorhamdani6
1Department of Clinical Microbiology, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia.
2Department of Clinical Pathology, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia.
3Bachelor Program, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia.
4Laboratory of Clinical Microbiology, Prof. dr. R. D. Kandou Hospital, Manado, Indonesia.
5Department of Clinical Pathology, Faculty of Medicine, Brawijaya University/dr. Saiful Anwar Hospital, Malang, Indonesia.P
6Department of Clinical Microbiology, Faculty of Medicine, Brawijaya University/dr. Saiful Anwar Hospital, Malang, Indonesia.
*Corresponding Author

Published In:   Volume - 19,      Issue - 2,     Year - 2026


ABSTRACT:
Background: Carbapenem resistant Acinetobacter baumannii-calcoaceticus complex (CRABC) pathogen is a significant opportunistic pathogen causes illnesses via healthcare-associated infections, however little is known regarding the RND efflux pump gene of A. baumannii-calcoaceticus complex bacteria resistant to carbapenem in Indonesian healthcare facilities. This study aimed to identify efflux pump of the RND family of adeABC and adeIJK genes of CRABC in two referral care hospitals in the islands of North Sulawesi and East Java, Indonesia. Methods: The Vitek2® system was used to identify the CRABC pathogen that were obtained from standard medical cultures from inpatients treated in the medical wards, intensive care unit (ICU), surgical wards, neonatal intensive care unit (NICU), and cardiovascular intensive care unit (CVICU) in two referral care hospitals in Manado, North Sulawesi, and Malang, East Java. We identified the presence of efflux pump adeABC and adeIJK genes of the RND family using multiplex PCR. Results: Seventy three A. baumannii-calcoaceticus complex carbapenem resistant bacteria were collected. The CRABS isolates were frequently found in the lower respiratory tract specimens. In this study, we detected the adeABC and adeIJK genes from CRABC isolates in the tertiary care hospitals in Malang and Manado, Indonesia. Conclusions: RND efflux pump of adeABC and adeIJK are abundantly present in the tertiary care hospitals in Malang and Manado, Indonesia.


Cite this article:
Heriyannis Homenta, Fredine Esther Silvana Rares, Siemona Lydia Eunike Berhimpon, Estelina Irene Benjamin, Sulaiman Faiz Sandjaya, Bellanty Costanty Togas, Julyadharma Julyadharma, Hani Susianti, Dewi Santosaningsih, Noorhamdani Noorhamdani. The RND Efflux pump and correlation with Antimicrobial Resistance in Clinical Isolates of Carbapenem-Resistant Acinetobacter Baumannii-calcoaceticus Complex in Indonesia. Research Journal of Pharmacy and Technology. 2026;19(2):612-6. doi: 10.52711/0974-360X.2026.00089

Cite(Electronic):
Heriyannis Homenta, Fredine Esther Silvana Rares, Siemona Lydia Eunike Berhimpon, Estelina Irene Benjamin, Sulaiman Faiz Sandjaya, Bellanty Costanty Togas, Julyadharma Julyadharma, Hani Susianti, Dewi Santosaningsih, Noorhamdani Noorhamdani. The RND Efflux pump and correlation with Antimicrobial Resistance in Clinical Isolates of Carbapenem-Resistant Acinetobacter Baumannii-calcoaceticus Complex in Indonesia. Research Journal of Pharmacy and Technology. 2026;19(2):612-6. doi: 10.52711/0974-360X.2026.00089   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-2-18


REFERENCES:
1.    Potron A, et al. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. International Journal of Antimicrobial Agents. 2015; 45(6): 568-85. doi: 10.1016/j.ijantimicag.2015.03.001.
2.    Moubareck CA, Halat DH. Insights into Acinetobacter baumannii: A review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen. Antibiotics. 2020; 9 (3): 1-29. doi: 10.3390/antibiotics9030119.
3.    De Vos D, et al. Molecular epidemiology and clinical impact of Acinetobacter calcoaceticus-baumannii complex in a belgian burn wound center. PLoS ONE. 2016, 11: 1-16. doi: 10.1371/journal.pone.0156237.
4.    Ramalingam AJ. History of Antibiotics and Evolution of Resistance. Research J. Pharm. and Tech. 2015: 8 (12): 1719-24. doi: 10.5958/0974-360X.2015.00309.1.
5.    Reshmi B, Gopinath P. Detection of blaNDM-1 gene for the production of MBL in Clinical Strains of Klebsiella pneumoniae. Research J. Pharm. and Tech. 2016; 9(10): 1618-20. doi: 10.5958/0974-360X.2016.00321.8
6.    Varshan R, Prakasam G. Detection of blaVIM gene encoding Metallo Beta Lactamase resistance among clinical isolates of Pseudomonas aeruginosa. Research J. Pharm. and Tech. 2016; 9(9):1465-8. doi: 10.5958/0974-360X.2016.00284.5
7.    Al-Hindawi RA, Jarallah EM. Detection of AmpC gene and Some OXA β-lactamase class among Carbapenem Resistant Acinetobacter baumannii (CRAB) isolates in Hilla, Iraq. Research J. Pharm. and Tech. 2018; 11(2): 777-784. doi: 10.5958/0974-360X.2018.00147.6.
8.    Halain AA, et al. Nursing Workload in Relation to Nosocomial Infection in Public Hospital Intensive Care Unit, Malaysia. Research J. Pharm. and Tech. 2018; 11(9): 3892-96. doi: 10.5958/0974-360X.2018.00713.8
9.    Kempf M, Rolain JM. Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: Clinical impact and therapeutic options. Int. J. Antimicrob. Agents. 2012; 39 (2): 105–14. doi: 10.1016/j.ijantimicag.2011.10.004.
10.    Vardakas KZ, et al. Factors associated with treatment failure in patients with diabetic foot infections: An analysis of data from randomized controlled trials. Diabetes Res. Clin. Pract. 2008; 80 (3): 344–51. doi: 10.1016/j.diabres.2008.01.009.
11.    Watkins RR, Van Duin D. Current trends in the treatment of pneumonia due to multidrug-resistant Gram-negative bacteria [version 2; referees: 2 approved] Referee Status. F1000Research. 2019; 8: 1-10.
12.    Weber S, et al. Bloodstream infections with vancomycin-resistant enterococci are associated with a decreased survival in patients with hematological diseases. Ann. Hematol. 2019; 98(3): 763–73. doi: 10.1007/s00277-019-03607-z.
13.    Queenan AM et al. Multidrug resistance among Acinetobacter spp. in the USA and activity profile of key agents: Results from CAPITAL Surveillance 2010. Diagnostic Microbiology and Infectious Disease. 2012; 73(3): 267-70. doi: 10.1016/j.diagmicrobio.2012.04.002.
14.    Najeeb LM, et al. Study the Epidemiology of Antibiotics Resistance in Ramadi Hospitals of Iraq. Research Journal of Pharmacy and Technology. 2022; 15(9): 4204-7. doi: 10.52711/0974-360X.2022.00706.
15.    Kolpa M, et al. Incidence, microbiological profile and risk factors of healthcare-associated infections in intensive care units: A 10 year observation in a provincial hospital in southern Poland. Int. J. Environ. Res. Public Health. 2018; 15(1): 1–16. doi: 10.3390/ijerph15010112.
16.    US CDC. Antibiotic Resistance Threats in the United States, 2019; US CDC: Atlanta, GA, USA, 2019.
17.    Zgurskaya HI, Nikaido H. Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol. 2000; 37: 219e25.
18.    Poole K. Efflux pumps as antimicrobial resistance mechanisms. Ann Med 2007;39:162e76.
19.    Vila J, Marti S, Sanchez-Cespedes J. Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J Antimicrob Chemother. 2007; 59: 1210e5.
20.    Doi Y, et al. Acinetobacter baumannii: Evolution of antimicrobial resistance-treatment options. Seminars in Respiratory and Critical Care Medicine. 2015; 36(1): 85-98. doi: 10.1055/s-0034-1398388.
21.    Peleg AY, et al. Acinetobacter baumannii: Emergence of a successful pathogen. Clinical Microbiology Reviews. 2008; 21 (3): 538-82. doi: 10.1128/CMR.00058-07.
22.    Wang CH, et al. Outbreak of imipenem-resistant Acinetobacter baumannii in different wards at a regional hospital related to untrained bedside caregivers. American Journal of Infection Control. 2017; 45 (10): 1086-90. doi: 10.1016/j.ajic.2017.04.016.
23.    Saharman YR, et al. Endemic carbapenem-nonsusceptible Acinetobacter baumannii-calcoaceticus complex in intensive care units of the national referral hospital in Jakarta, Indonesia. Antimicrobial Resistance and Infection Control. 2018; 7(5): 1-12. doi: 10.1186/s13756-017-0296-7.
24.    Kuntaman K, et al. Occurrence and characterization of carbapenem-resistant Gram-negative bacilli: A collaborative study of antibiotic-resistant bacteria between Indonesia and Japan. International Journal of Urology. 2018; 25(11): 966-72. doi: 10.1111/iju.13787.
25.    Aliramezani A, et al. Clonal relatedness and biofilm formation of OXA-23-producing carbapenem resistant Acinetobacter baumannii isolates from hospital environment. Microbial Pathogenesis. 2016; 99: 204-08. doi: 10.1016/j.micpath.2016.08.034.
26.    “Clinical and Laboratory Standards Institute,” 2019.
27.    Homenta H, et al. Molecular characterization of clinical carbapenem-resistant Acinetobacter baumannii isolates from two tertiary care hospitals in Indonesia. Research Journal of Pharmacy and Technology. 2022; 15(7): 2917-22. doi: 10.52711/0974-360X.2022.00486.
28.    El-Shazly S, et al. Molecular epidemiology and characterization of multiple drug-resistant (MDR) clinical isolates of Acinetobacter baumannii. International Journal of Infectious Diseases. 2015; 41: 42-9. doi: 10.1016/j.ijid.2015.10.016.
29.    Homenta, H. et al. The Molecular detection of blaVIM in carbapenem-resistant Acinetobacter baumannii-calcoaceticus complex infections in Indonesia. Research Journal of Pharmacy and Technology. 2024; 17(10): 5031-5. doi: 10.52711/0974-360X.2024.00773.
30.    Singh, H.; Thangaraj, P.; Chakrabarti, A. Acinetobacter baumannii: A Brief Account of Mechanisms of Multidrug Resistance and Current and Future Therapeutic Management. J. Clin. Diagn. Res. 2013, 7, 2602–2605.
31.    Nikaido, H.; Takatsuka, Y. Mechanisms of RND multidrug efflux pumps. Biochim. Biophys. Acta 2009, 1794, 769–781.
32.    Kuo SC, Chang SC, Wang HY, Lai JF, Chen PC, Shiau YR, et al. Emergence of extensively drug-resistant Acinetobacter baumannii complex over 10 years: nationwide data from the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program. BMC Infect Dis 2012;12:200.
33.    Raad Abdulabass AL-Harmoosh, Eman M. Jarallah, Anmar M. AL-Shamari, Hussein M. AL-Khafaji. Detection of Efflux Pumps Genes in Clinical Isolates of Acinetobacter baumannii. Research J. Pharm. and Tech. 2017; 10(12): 4231-4236. doi: 10.5958/0974-360X.2017.00775.2
34.    Amin, M.; Navidifar, T.; Shooshtari, F.S.; Rashno, M.; Savari, M.; Jahangirmehr, F.; Arshadi, M. Association Between Biofilm Formation, Structure, and the Expression Levels of Genes Related to biofilm formation and Biofilm-Specific Resistance of Acinetobacter baumannii Strains Isolated from Burn Infection in Ahvaz, Iran. Infect. Drug Resist. 2019, 12, 3867–3881.
35.    MacPherson DW, et al. Population mobility, globalization, and antimicrobial drug resistance. Emerg. Infect. Dis. 2009; 15: 1727–1732. doi: 10.3201/eid1511.090419.
36.    Homenta H, et al. Molecular Epidemiology of Clinical Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus complex Isolates in Tertiary Care Hospitals in Java and Sulawesi Islands, Indonesia. Trop. Med. Infect. Dis. 2022; 7 (277): 1-13. doi.org/10.3390/tropicalmed7100277.
37.    Magnet S, Courvalin P, Lambert T. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother 2001;45:3375e80.
38.    Damier-Piolle L, Magnet S, Bremont S, Lambert T, Courvalin P. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Antimicrob Agents Chemother 2008;52:557e62
39.    Coyne, S.; Guigon, G.; Courvalin, P.; Périchon, B. Screening and Quantification of the Expression of Antibiotic Resistance Genes in Acinetobacter baumannii with a Microarray. Antimicrob. Agents Chemother. 2010, 54, 333–340.
40.    Coyne S, Rosenfeld N, Lambert T, Courvalin P, Perichon B. Overexpression of resistance-nodulation-cell division pump AdeFGH confers multidrug resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2010; 54: 4389e93.
41.    Ruzin A, Keeney D, Bradford PA. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Antimicrob Chemother 2007;59:1001e4.
42.    AL-Harmoosh RA, et al. Detection of Efflux Pumps Genes in Clinical Isolates of Acinetobacter baumannii. Research J. Pharm. and Tech. 2017; 10 (12): 4231-36. doi: 10.5958/0974-360X.2017.00775.2
43.    Bhavani G, Gopinath P. Detection of Biofilm among Clinical isolates of Acinetobacter baumannii by Tissue Culture Plate Method (TCP). Research J. Pharm. and Tech. 2016; 9 (10): 1635-1637. doi: 10.5958/0974-360X.2016.00327.9.
44.    Coyne S, Courvalin P, Perichon B. Efflux-mediated antibiotic resistance in Acinetobacter spp. Antimicrob Agents Chemother 2011; 55: 947e53





Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available