Author(s): Divya Gupta, Vandana Verma

Email(s): Vandana04@bhu.ac.in

DOI: 10.52711/0974-360X.2026.00070   

Address: Divya Gupta1, Vandana Verma2*
1Ph.D Scholar, Department of Kriya Sharir, Faculty of Ayurveda, IMS, Banaras Hindu University, Varanasi UP.
2Assistant Professor (Stage 3), Department of Kriya Sharir, Faculty of Ayurveda, IMS, Banaras Hindu University, Varanasi UP.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
Mung bean (Vigna radiata L.) is a staple pulse cultivated globally, particularly in Asian countries, and has been used in traditional medicine for centuries. Remarkable Studies demonstrate the versatile effect of mung in metabolic syndromes. However, the pulse consumption pattern has declined over the past few decades. The Global disease burden has increased due to inappropriate dietary patterns, sedentary lifestyles, and reduced physical activity. Ancient classics and modern practices support the use of green gram as a plant-based source to reduce the incidence of degenerative diseases. Legumes are an integral part of an individual diet because they are rich in protein, Carbohydrates, fibre, minerals, vitamins, and bioactive metabolites, making them more effective in day-to-day practice. Being rich in antioxidants and phytochemicals, mung bean showed hypolipidemic and hypoglycaemic effects by reducing certain parameters of total cholesterol, triglycerides, fasting blood glucose, reactive oxygen species, and improving insulin sensitivity. 19 studies made searches using electronic databases, which were included in this review following the defined inclusion and exclusion criteria. Articles were analyzed and described according to a list of criteria defined; the publishing year, the potential benefit of mung (mung bean seed coat and extract, mung bean whole, germinated, grounded powder, cooked), etc. Extract and powder of whole mung bean seed have been used in the majority of the studies for intervention, which exhibits the Antidiabetic, anti-inflammatory, reduced BMI, managed lipid profile and increased gut microbiota diversity. People are nowadays over-fastidious about the protein content, so mung bean can be the best option for them to be affordable and available.


Cite this article:
Divya Gupta, Vandana Verma. Hypolipidemic and Hypoglycemic Effects of Mung Bean in the Experimental Model: A Systematic Review. Research Journal of Pharmacy and Technology. 2026;19(1):481-9. doi: 10.52711/0974-360X.2026.00070

Cite(Electronic):
Divya Gupta, Vandana Verma. Hypolipidemic and Hypoglycemic Effects of Mung Bean in the Experimental Model: A Systematic Review. Research Journal of Pharmacy and Technology. 2026;19(1):481-9. doi: 10.52711/0974-360X.2026.00070   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-1-70


REFERENCES:
1.    Krishnamoorthy Y. Rajaa S. Murali S. Rehman T. Sahoo J. Kar SS. Prevalence of metabolic syndrome among adult population in India: a systematic review and meta-analysis. PLoSOne.15(10). doi.org/10.1371/journal.pone.0240971. 
2.    Saklayen MG. The global epidemic of the metabolic syndrome. Current Hypertension Reports. 2018; 20(2): 1-8. doi.org/10.1007/s11906-018-0812-z.
3.    Verma M. Verma P. Parveen S. Dubey K. Comparative study of lipid profile levels in vegetarian and non-vegetarian person. International Journal of Life-Sciences Scientific Research. 2015; 1(2): 89-93. doi.10.36347/sjams.2022.v10i01.023.
4.    Marrone G. Guerriero C. Palazzetti D. Lido P. Marolla A. Daniele DF et al. Vegan Diet Health Benefits in Metabolic Syndrome. Nutrients. 2021; 13(3): 817. doi.10.3390/nu13030817.
5.    Dinu M. Abbate R. Gensini GF. Casini A. Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Critical Reviews in Food Science and Nutrition. 2017; 57(17): 3640-3649.doi.org/10.1080/10408398.2016.1138447
6.    Meher T. Sahoo H. The epidemiological profile of metabolic syndrome in Indian population: A comparative study between men and women. Clinical Epidemiology and Global Health. 2020; 8(4): 1047-1052. doi.org/10.1016/j.cegh.2020.03.018 
7.    Ranjitha R. Elango K. Damayanthi RD. Niyaz US. Formulation and Evaluation of Lovastatin Loaded Nanosponges for the Treatment of Hyperlipidemia. Research Journal of Pharmacy and Technology. 2021; 14(11): 5653-60. doi. 10.52711/0974-360X.2021.00983
8.    Lolok N. Sahidin I. Sumiwi S. Muhtadi A. Antidiabetes effect of noni fruit (Morinda citrifolia l.) on mice with oral glucose tolerance method and streptozotocin induction method. Research Journal of Pharmacy and Technology. 2021; 14(10): 5067-71. doi.10.52711/0974-360X.2021.00883. 
9.    Banu B, Yasmin F, Khan MH, Ali L, Sauerborn R, Souares A. A systematic review on knowledge-attitude-practice on Diabetes: Assessment process and outcome levels. Research Journal of Pharmacy and Technology. 2021; 14(11): 6125-38. doi.10.52711/0974-360X.2021.01064 
10.    National Family Health Survey 2019-2021. [cited 2023 Dec 26]. Available from: https://main.mohfw.gov.in/sites/default/files/NFHS-5_Phase-II_0.pdf 
11.    Luhar S. Timæus IM. Jones R. Cunningham S. Patel SA. Kinra S. Clarke L et al. Forecasting the prevalence of overweight and obesity in India to 2040. PLoS One. 2020; 15(2). doi: 10.1371/journal.pone.0229438
12.    International Diabetes Federation 2021. [cited 2024 Jan 22]. Available from: https://diabetesatlas.org/#:~:text=Diabetes%20around%20the%20world%20in%202021%3A,%2D%20and%20middle%2Dincome%20countries. 
13.    McGrath L. Fernandez ML. Plant-based diets and metabolic syndrome. Evaluating the influence of diet quality. Journal of Agriculture and Food Research 2022; 9: 100322. doi.org/10.1016/j.jafr.2022.100322
14.    Samtiya M. Aluko RE. Dhewa T. Rojas JMM. Potential health benefits of plant food-derived bioactive components: An overview. Foods. 2021; 10(4): 839. doi.org/10.3390/foods10040839
15.    Pistollato F, Battino M. Role of plant-based diets in the prevention and regression of metabolic syndrome and neurodegenerative diseases. Trends in food Science and Technology. 2014; 40(1): 62-81. doi.org/10.1016/j.tifs.2014.07.012
16.    Singh B Singh. J.P. Shevkani. Singh N. Kaur A. Bioactive constituents in pulses and their health benefits. J. Food Sci. Technol. 2017; 54: 858–870. doi.10.1007/s13197-016-2391-9
17.    Hou D. Yousaf L. Xue Y. Hu J. Wu J. Hu X. Feng N et al. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 2019; 11(6): 1238.doi.org/10.3390/nu11061238
18.    Mehta N. Rao P. Saini R. A review on metabolites and pharmaceutical potential of food legume crop mung bean (Vigna radiata L. Wilczek). BioTechnologia. 2021; 102(4): 425. doi: 10.5114/bta.2021.111107
19.    http://www.prisma-statement.org/documents/PRISMA_2020_checklist.pdf
20.    Yeap SK. Mohd Ali N. Mohd Yusof H. Alitheen NB. Beh BK. Ho WY. Koh SP. et al Antihyperglycemic effects of fermented and nonfermented mung bean extracts on alloxan‐induced‐diabetic mice. BioMed Research International. 2012; 2012(1): 285430.doi.org/10.1155/2012/285430
21.    Tachibana N. Wanezaki S. Nagata M. Motoyama T. Kohno M. Kitagawa S. Intake of mung bean protein isolate reduces plasma triglyceride level in rats. Functional Foods in Health and Disease. 2013; 3(9): 365-76.doi.org/10.31989/ffhd.v3i9.39
22.    Jang YH. Kang MJ. Choe EO. Shin M. Kim JI. Mung bean coat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice. Food Science and Biotechnology. 2014; 23: 247-52. doi.10.1007/s10068-014-0034-3
23.    Yao Y. Zhu Y. Ren G. Mung bean protein increases plasma cholesterol by up-regulation of hepatic hmg-coa reductase, and cyp7a1 in mRNA levels. J. Food Nutr. Res. 2014; 2: 770-5. doi:10.12691/jfnr-2-11-2
24.    Yao Y. Hao L. Shi Z. Wang L. Cheng X. Wang S. Ren G. Mung bean decreases plasma cholesterol by up-regulation of CYP7A1. Plant Foods for Human Nutrition. 2014; 69: 134-6. doi.10.1007/s11130-014-0405-1
25.    Yeap SK. Beh BK. Ho WY. Mohd Yusof H. Mohamad NE. Ali NM. Jaganath IB et al. In vivo antioxidant and hypolipidemic effects of fermented mung bean on hypercholesterolemic mice. Evidence-Based Complementary and Alternative Medicine. 2015 1;2015. https://doi.org/10.1155/2015/508029
26.    Asrullah M.  Lestari LA. Helmyati S. Farmawati A. The effect of mung bean sprouts (Phaseolus radiatus L.) to lipid profile of male Sprague-Dawley rats fed with high-fat diet. In AIP Conference Proceedings 2016; 1755: 1. AIP Publishing.doi.org/10.1063/1.4958562
27.    Liyanage R. Kiramage C. Visvanathan R. Jayathilake C. Weththasinghe P. Bangamuwage R. Chaminda Jayawardana B et al. Hypolipidemic and hypoglycemic potential of raw, boiled, and sprouted mung beans (Vigna radiata L. Wilczek) in rats. Journal of Food Biochemistry. 2018;42(1).doi.org/10.1111/jfbc.12457
28.    Kapravelou G, Martínez R, Nebot E, López-Jurado M, Aranda P, Arrebola F, Cantarero S et al. The combined intervention with germinated Vigna radiata and aerobic interval training protocol is an effective strategy for the treatment of Non-Alcoholic Fatty Liver Disease (NAFLD) and other alterations related to the metabolic syndrome in Zucker rats. Nutrients. 2017; 9(7): 774. doi.org/10.3390/nu9070774
29.    Nakatani A. Li X. Miyamoto J. Igarashi M. Watanabe H. Sutou A. Watanabe K et al. Dietary mung bean protein reduces high-fat diet-induced weight gain by modulating host bile acid metabolism in a gut Microbiota-dependent manner. Biochemical and Biophysical Research Communications. 2018; 501(4): 955-61. doi.org/10.1016/j.bbrc.2018.05.090 
30.    Hou D. Zhao Q. Yousaf L. Xue Y. Shen Q. Whole mung bean (Vigna radiata L.) supplementation prevents high-fat diet-induced obesity and disorders in a lipid profile and modulates gut microbiota in mice. European Journal of Nutrition. 2020; 59: 3617-34. doi.org/10.1007/s00394-020-02196-2
31.    Hou D. Zhao Q. Yousaf L. Xue Y. Shen Q. Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice. European Journal of Nutrition. 2021; 60: 2029-45. doi.org/10.1007/s00394-020-02395-x
32.    Charoensiddhi S. Chanput WP. Sae-Tan S. Gut microbiota modulation, anti-diabetic and anti-inflammatory properties of polyphenol extract from mung bean seed coat (Vigna radiata L.). Nutrients. 2022; 14(11): 2275. doi.org/10.3390/nu14112275
33.    Li L. Tian Y. Zhang S. Feng Y. Wang H. Cheng X. Ma Y.  Z. et al.  Regulatory effect of mung bean peptide on prediabetic mice induced by high-fat diet. Frontiers in Nutrition. 2022; 9: 913016.| https://doi.org/10.3389/fnut.2022.913016
34.    Li L. Tian Y. Feng Y. Zhang S. Jiang Y. Zhang Y. Zhan Y. et al. Improvement in mung bean peptide on high-fat diet-induced insulin resistance mice using untargeted serum metabolomics. Frontiers in Nutrition. 2022; 9: 893270. doi.org/10.3389/fnut.2022.893270
35.    Amare YE. Dires K. Asfaw T. Antidiabetic Activity of Mung Bean or Vigna radiata (L.) Wilczek Seeds in Alloxan‐Induced Diabetic Mice. Evidence‐Based Complementary and Alternative Medicine. 2022; 2022(1): 6990263. doi.org/10.1155/2022/6990263
36.    Shen X. Jiang X. Qian L. Zhang A. Zuo F.  Zhang D. Polyphenol extracts from germinated mung beans can improve type 2 diabetes in mice by regulating intestinal microflora and inhibiting inflammation. Frontiers in Nutrition. 2022; 9: 846409. https://doi.org/10.3389/fnut.2022.846409
37.    Kabré JD. Dah-Nouvlessounon D. Hama-Ba F. Agonkoun A. Guinin F. Sina H. Kohonou AN. et al.Mung Bean (Vigna radiata (L.) R. Wilczek) from Burkina Faso Used as Antidiabetic, Antioxidant and Antimicrobial Agent. Plants. 2022; 11(24): 3556. doi.org/10.3390/plants11243556
38.    Milenkovic D. Morand C. Cassidy A. Konic-Ristic A. Tomás-Barberán F. Ordovas JM. Kroon P. Interindividual variability in biomarkers of cardiometabolic health after consumption of major plant-food bioactive compounds and the determinants involved. Advances in Nutrition. 2017; 8(4): 558-70. doi.org/10.3945/an.116.013623
39.    Ganesan K. Xu B. A critical review on phytochemical profile and health-promoting effects of mung bean (Vigna radiata). Food Science and Human Wellness. 2018; 7(1): 11-33. doi.org/10.1016/j.fshw.2017.11.002
40.    Ostfeld R. J. Definition of a plant-based diet and overview of this special issue. Journal of Geriatric Cardiology: JGC 2017; 14(5): 315. doi:10.11909/j.issn.1671-5411.2017.05.008
41.    Food and Agriculture Organisation of the United Nations 2016. [cited 2024 Feb 18]. Available from: https://www.fao.org/fsnforum/consultation/pulses-are-praised-their-health-environmental-and-economic-benefits-how-can-their-full?page=3 
42.    Suja C. Shuhaib B. Abdurahman M. Khathoom H. Simi K. A review on dietary antioxidants. Research Journal of Pharmacy and Technology. 2016; Feb 1; 9(2): 196. Doi:10.5958/0974-360X.2016.00035.4
43.    Chauhan M. Garg V. Zia G. Dutt R. Potential role of phytochemicals of fruits and vegetables in human diet. Research Journal of Pharmacy and Technology. 2020; 13(3): 1587-91. Doi: 10.5958/0974-360X.2020.00287.5
44.    Subramanian S, Thiruvengadamani H, Sathiavelu M. Comparison of Human gut Microbiota with other Animals. Research Journal of Pharmacy and Technology. 2022; 15(12): 5541-7. Doi: 10.52711/0974-360X.2022.00935
45.    KumarP, Joshi PK, Parappurathu S. Pulses for nutrition in India: changing pattern from farm to fork, Cahpter-2, International Food Policy 2017. doi: https://doi.org/10.2499/9780896292567.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available