Author(s):
Muthia Fadhila, Annisa Rahma, Yeni Novita Sari, Rina Wahyuni, Meilinda Mustika
Email(s):
muthiafadhila@stifarm-padang.ac.id
DOI:
10.52711/0974-360X.2026.00051
Address:
Muthia Fadhila*, Annisa Rahma, Yeni Novita Sari, Rina Wahyuni, Meilinda Mustika
Department of Pharmaceutics, School of Pharmaceutical Science Padang (STIFARM Padang), West Sumatera, Indonesia, 25147.
*Corresponding Author
Published In:
Volume - 19,
Issue - 1,
Year - 2026
ABSTRACT:
Quercetin is a drug that is included in the Biopharmaceutical Classification System (BCS) class two with low solubility and high permeability. One effort that can be made to increase the solubility of drugs in water is by forming cocrystals. The aim of this research is to determine the characteristics of succinic acid quercetin cocrystals, increase solubility and dissolution rate. This research was carried out using the freeze-drying method with a ratio of 1:1 mol. The characterization carried out included X-Ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FT-IR). Solubility tests and dissolution profile determination were carried out. The results of characterization using XRD showed that there was a new peak in the quercetin-succinic acid cocrystal at an angle of 2? at an angle of 12.5011°. DSC shows a decrease in the melting point. FT-IR shows that there is no wave number shift. Quercetin in cocrystalline form increased in solubility by 3 times, with a solubility result of 1.179 mg/mL and the dilution profile increased by 1.4 times, with a dissolution efficiency of 28.550%. In general, the preparation of quercetin-succinic acid cocrystals can improve the physicochemical properties, as well as increase the solubility and dissolution rate of quercetin.
Cite this article:
Muthia Fadhila, Annisa Rahma, Yeni Novita Sari, Rina Wahyuni, Meilinda Mustika. Effect of Quercetin-Succinic Acid Cocrystal Formation Using Freeze-Drying Technique on Solubility and Dissolution Rate. Research Journal of Pharmacy and Technology. 2026;19(1):352-7. doi: 10.52711/0974-360X.2026.00051
Cite(Electronic):
Muthia Fadhila, Annisa Rahma, Yeni Novita Sari, Rina Wahyuni, Meilinda Mustika. Effect of Quercetin-Succinic Acid Cocrystal Formation Using Freeze-Drying Technique on Solubility and Dissolution Rate. Research Journal of Pharmacy and Technology. 2026;19(1):352-7. doi: 10.52711/0974-360X.2026.00051 Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-1-51
REFERENCES:
1. Shargel L, Wu-Pong S, Yu ABC. Applied Biopharmaceutics and Pharmacokinetics 7th Edition. McGraw-Hill Education; 2016.
2. Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem Toxicol. 2007; 45(11): 2179-2205. doi:10.1016/j.fct.2007.05.015
3. Knab AM, Shanely RA, Henson DA, et al. Influence of Quercetin Supplementation on Disease Risk Factors in Community-Dwelling Adults. J Am Diet Assoc. 2011; 111(4): 542-549. doi:10.1016/j.jada.2011.01.013
4. Dueñas M, González-Manzano S, González-Paramás A, Santos-Buelga C. Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. J Pharm Biomed Anal. 2010; 51(2): 443-449. doi:10.1016/j.jpba.2009.04.007
5. Nuengchamnong N, Hermans-Lokkerbol A, Ingkaninan K. Separation and Detection of the Antioxidant Flavonoids, Rutin and Quercetin, Using HPLC Coupled on-line With Colorimetric Detection of Antioxidant Activity. Naresuan Univ J. 2004; 12(2): 25-37.
6. Rajesh Kumar S, Priyatharshni S, Babu VN, et al. Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci. 2014; 436: 234-242. doi:10.1016/j.jcis.2014.08.064
7. Kleemann R, Verschuren L, Morrison M, et al. Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models. Atherosclerosis. 2011; 218(1): 44-52. doi:10.1016/j.atherosclerosis.2011.04.023
8. Rattanachaikunsopon P, Phumkhachorn P. Contents and antibacterial activity of flavonoids extracted from leaves of Psidium guajava. J Med Plants Res. 2010; 4(5): 393-396.
9. Ganesan S, Faris AN, Comstock AT, et al. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res. 2012; 94(3): 258-271. doi:10.1016/j.antiviral.2012.03.005
10. Nabavi SF, Russo GL, Daglia M, Nabavi SM. Role of quercetin as an alternative for obesity treatment: You are what you eat! Food Chem. 2015; 179: 305-310. doi:10.1016/j.foodchem.2015.02.006
11. Lucida H, Primadini Y, Suhatri. A study on the acute toxicity of quercetin solid dispersion as a potential nephron-protector. Rasayan J Chem. 2019; 12(2): 727-732. doi:10.31788/RJC.2019.1224068
12. Vishali DA, Monisha J, Sivakamasundari SK, Moses JA, Anandharamakrishnan C. Spray freeze drying: Emerging applications in drug delivery. J Control Release. 2019; 300: 93-101. doi:10.1016/j.jconrel.2019.02.044
13. Adebisi AO, Kaialy W, Hussain T, et al. Freeze-dried crystalline dispersions: Solid-state, triboelectrification and simultaneous dissolution improvements. J Drug Deliv Sci Technol. 2021; 61: 102173. doi:10.1016/j.jddst.2020.102173
14. Athiyah U, Kusuma PA, Tutik, et al. Crystal engineering of quercetin by liquid assisted grinding method. J Teknol. 2019; 81(1): 39-45. doi:10.11113/jt.v81.12639
15. Setyawan D, Permata SA, Zainul A, Dwi Lestari MLA. Improvement in vitro dissolution rate of quercetin using cocrystallization of quercetin-malonic acid. Indones J Chem. 2018; 18(3): 531-536. doi:10.22146/ijc.28511
16. Wisudyaningsih B, Setyawan D, Siswandono. Co-crystallization of quercetin and isonicotinamide using solvent evaporation method. Trop J Pharm Res. 2019; 18(4): 672-702. doi:10.4314/tjpr.v18i4.3
17. Mirza S, Miroshnyk I, Heinamaki J, Yliruusi J. Co - Crystals: an Emerging Approach for Enhancing Properties of Pharmaceutical Solids. Dosis. 2008; 24(02): 90-96. http://www.pssrc.org/download-directory?task=document.viewdoc&id=6
18. Umar S, Farnandi R, Salsabila H, Zaini E. Multicomponent Crystal of Trimethoprim and Citric Acid: Solid State Characterization and Dissolution Rate Studies. Open Access Maced J Med Sci. 2022; 10: 141-145. doi:10.3889/oamjms.2022.7920
19. Hasanah U, Azfitri Y, Fitriani L, Zaini E. Tenox Icam-Tromethamine Multicomponent Crystal: Physicochemical Characteristics, Solubility, and Dissolution Evaluation. Int J Appl Pharm. 2024; 16(Special Issue 1): 23-27. doi:10.22159/ijap.2024.v16s1.04
20. Zaini E, Fitriani L, Sari RY, Rosaini H, Horikawa A, Uekusa H. Multicomponent Crystal of Mefenamic Acid and N-Methyl-D-Glucamine: Crystal Structures and Dissolution Study. J Pharm Sci. 2019; 108(7): 2341-2348. doi:10.1016/j.xphs.2019.02.003
21. Fitriani L, Astika A, Hasanah U, Zaini E. Preparation of curcumin and quercetin multicomponent crystals via solvent-drop grinding. Trop J Nat Prod Res. 2021; 5(4): 673-677. doi:10.26538/tjnpr/v5i4.14
22. Fadhila M, Halim A, Assyifa. Characterization and Dissolution Rate Studies of Inclusion Complex of Glibenclamide and Hydroxypropyl-Β-Cyclodextrin Using Co-Grinding Method. Int J Appl Pharm. 2022; 14(6): 251-255. doi:10.22159/ijap.2022v14i6.46041
23. Fadhila M, Wahyuni R, Halim A, Proklawati H. Effectiveness of Dry Grinding and Wet Grinding Methods on Physicochemical Properties, Solubility, and Dissolution Rate of Nimodipine-HPMC Nanoparticles. Indones J Pharm. 2023; 34(4): 567-573. doi:10.22146/ijp.7267
24. Fadhila M, Effendy S, Siregar SH. Inclusion Complexation of Usnic Acid - Hydroxypropyl-β-cyclodextrin: Physicochemical Characterization and Dissolution Rate Studies. Res J Pharm Tech. 2024; 17(5): 2206.
25. The Merck Index. An Encyclopedia of Chemical, Drug, and Biological (Tenth Edition). Harper and Row; 1983.
26. Bunaciu AA, Udriştioiu E gabriela, Aboul-Enein HY. X-Ray Diffraction: Instrumentation and Applications. Crit Rev Anal Chem. 2015; 45(4): 289-299. doi:10.1080/10408347.2014.949616
27. Octavia MD, Hasmiwati H, Revilla G, Zaini E. Multicomponent Crystals of Piperine-Nicotinic Acid: The Physicochemical and Dissolution Rate Properties. Trop J Nat Prod Res. 2023; 7(8): 3701-3705. doi:10.26538/tjnpr/v7i8.20
28. Zaini E, Afriyani, Fitriani L, Ismed F, Horikawa A, Uekusa H. Improved solubility and dissolution rates in novel multicomponent crystals of piperine with succinic acid. Sci Pharm. 2020; 88(2). doi:10.3390/scipharm88020021
29. Zaini E, Sumirtapura YC, Halim A, Fitriani L, Soewandhi SN. Formation and characterization of sulfamethoxazole-trimethoprim cocrystal by milling process. J Appl Pharm Sci. 2017; 7(12): 169-173. doi:10.7324/JAPS.2017.71224
30. Fitriani L, Afriyanti I, Afriyani, Ismed F, Zaini E. Solid dispersion of usnic acid–HPMC 2910 prepared by spray drying and freeze drying techniques. Orient J Chem. 2018; 34(4): 2083-2088. doi:10.13005/ojc/3404048
31. Sathisaran I, Dalvi SV. Engineering cocrystals of poorlywater-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics. 2018;10(3). doi:10.3390/pharmaceutics10030108
32. Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009; 9(6): 2950-2967. doi:10.1021/cg900129f
33. Dachriyanus. Analisis Struktur Senyawa Organik Secara Spektroskopi. LPTIK Universitas Andalas; 2004.
34. Putra ODD, Yonemochi E, Uekusa H. Isostructural Multicomponent Gliclazide Crystals with Improved Solubility. Cryst Growth Des. 2016; 16(11): 6568-6573. doi:10.1021/acs.cgd.6b01279
35. Abdou HM. Dissolution, Bioavaibility And Bioequivalence. Mark Publishing Company Easton; 1989.