Author(s): Hasyrul Hamzah, Titik Nuryastuti, Sylvia Utami Tunjung Pratiwi, Asriullah Jabbar, Nur Atika Astriani

Email(s): t.nuryastuti@ugm.ac.id

DOI: 10.52711/0974-360X.2026.00040   

Address: Hasyrul Hamzah1,2, Titik Nuryastuti3*, Sylvia Utami Tunjung Pratiwi4, Asriullah Jabbar5, Nur Atika Astriani1
1Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, North Sekip, Yogyakarta 55281, Indonesia.
2Faculty of Pharmacy, Universitas Muhammadiyah Kalimantan Timur, Samarinda, Kalimantan Timur 75124, Indonesia.
3Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
4Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia.
5Department of Pharmacy, Faculty of Pharmacy, Universitas Halu Oleo, Kendari 93232, Indonesia.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
The formation of biofilms on catheters, particularly by Staphylococcus aureus, is a major cause of catheter-associated urinary tract infections (UTIs), contributing to increased morbidity and mortality. This study explores the efficacy of demethoxycurcumin, a compound derived from Curcuma longa, as a potential antibiofilm agent against S. aureus. The results showed that demethoxycurcumin at a 1% concentration effectively inhibited S. aureus biofilm on catheters, with an inhibition rate of 81.72%± 0.01 in the mid-phase (24 hours), 61.48%± 0.01 in the maturation phase (48hours), and 60.16%±0.01 in the eradication phase (6 days), comparable to chloramphenicol as a positive control. Although its effectiveness decreased in the later biofilm phases, it consistently inhibited over 50%, demonstrating its potential as an antibiofilm agent. Scanning Electron Microscopy (SEM) analysis revealed that demethoxycurcumin disrupted biofilm structure and reduced bacterial adhesion. These findings suggest that demethoxycurcumin could be developed into a novel therapeutic agent for preventing and treating biofilm-related infections on medical devices, particularly in catheterized patients.


Cite this article:
Hasyrul Hamzah, Titik Nuryastuti, Sylvia Utami Tunjung Pratiwi, Asriullah Jabbar, Nur Atika Astriani. The Efficacy of Demethoxycurcumin from Tumeric (Curcuma longa) in Combating Staphylococcus aureus Biofilm on Catheters. Research Journal of Pharmacy and Technology. 2026;19(1):283-8. doi: 10.52711/0974-360X.2026.00040

Cite(Electronic):
Hasyrul Hamzah, Titik Nuryastuti, Sylvia Utami Tunjung Pratiwi, Asriullah Jabbar, Nur Atika Astriani. The Efficacy of Demethoxycurcumin from Tumeric (Curcuma longa) in Combating Staphylococcus aureus Biofilm on Catheters. Research Journal of Pharmacy and Technology. 2026;19(1):283-8. doi: 10.52711/0974-360X.2026.00040   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-1-40


REFERENCES: 
1.    Hamzah H Hertiani T. Pratiwi SUT. Nuryastuti T. Efek Saponin Terhadap Penghambatan Planktonik Dan Mono-Spesies Biofilm Candida albicans ATCC 10231 Pada Fase Pertengahan, Pematangan Dan Degaradasi. Maj. Farm. 2021; 17(2): 198-205. doi: 10.22146/farmaseutik.v17i2.54444.
2.    Thyagarajan R. Namasivayam SKR. Gopakumaran N. Singh V.Samydurai S. Evaluation of in Vitro Drug Controlled Release of Biocompatible Metallic and Non Metallic Nanoparticles Incorporated Anti Bacterial Antibiotics and Their Anti Biofilm Activity Against E.coli. Res. J. Pharm. Technol. 2015; 8(3): 316-319. doi: 10.5958/0974-360X.2015.00052.9.
3.    Semarandana WGP. Infeksi Saluran Kemih akibat Pemasangan Kateter. Count. Prof. Dev. 2014; 41(10): 737-740 vol. 
4.    Salman SA. Aldeen WRT. Antibacterial, Anti-virulance Factors of Hibiscus Sabdariffa Extracts In Staphylococcus aureus Isolated from patients with urinary tract infection. Res. J. Pharm. Technol. 2018; 11(2): 735-740. doi: 10.5958/0974-360X.2018.00138.5.
5.    Chandra MP. Waworuntu O. Buntuan V. Pola Bakteri Pada Urin Pasien Yang Menggunakan Kateter Uretra Di Ruang Perawatan Intensif Rsup Prof. Dr. R. D. Kandou Manado.J. e-Biomedik. 2014; 2(2): 501-508. doi: 10.35790/ebm.2.2.2014.5048.
6.    Setyowati E. Irzani EF. Luthfi CFM. Hamzah H. Tracing The Antibacterial, Antifungal And Anti-biofilm Activities Of Root Extract Bajakah Tampala (Spatholobus Littoralis Hassk). Jfsp. 2024; 10(1): 32-41. doi:10.31603/pharmacy.v10i1.8804
7.    Nicolle. Catheter Associated Urinary Tract Infections,” Antimicrob. Resist. Infect. Control. 2014; 3: 23
8.    Hamzah H. Hertiani T. Pratiwi SUT. Murti YB. Nuryastuti T. The Inhibition and Degradation Activity of Demethoxycurcumin as Antibiofilm on C.albicans ATCC 10321. Res. J. Pharm. Technol. 2020; 13(1): 377-382. doi: 10.5958/0974-360X.2020.00075.X.
9.    Hamzah H. Hertiani T. Pratiwi SUT. Nuryastuti T. Efficacy of quercetin against polymicrobial biofilm on catheters. Res. J. Pharm. Technol. 2020; 13(11): 5277-5282. doi: 10.5958/0974-360X.2020.00923.3.
10.    Hola V. Ruzicka F. The Formation of Poly-Microbial Biofilms on Urinary Catheters. 2011. doi: 10.5772/22680.
11.    Abdelghafar A. Yousef N. Askoura M. Combating Staphylococcus aureus biofilm with antibiofilm agents as an efficient strategy to control bacterial infection. Res. J. Pharm. Technol. 2020; 13(11). doi: 10.5958/0974-360X.2020.00977.4.
12.    Hamzah H. Pratiwi SUT. Hertiani T. Efficacy of C-10 massoialactone against-multispecies microbial biofilm.Biointerface Res. Appl. Chem. 2022; 12(3); 3472-3487. doi: 10.33263/BRIAC123.34723487.
13.    Hamzah H. Hertiani T. Pratiwi SUT. Nuryastuti T. Gani A.P. Antibiofilm studies of zerumbone against polymicrobial biofilms of staphylococcus aureus, escherichia coli, pseudomonas aeruginosa, and candida albicans. Int. J. Pharm. Res. 2020; 12(9): 1307-1314. 
14.    Hamzah H. Pratiwi SUT. Jabbar A. Hafifah AS. Al-Fajri BA. Nurhalisah N. Bioactivity Tracing of the Ethanol Extract of Bajakah Tampala (Spatholobus littoralis Hassk.) Typical Plant of Kalimantan Island as Antibiofilm of Staphylococcus aureus. Open Access Maced. J. Med. Sci. 2023; 11(A): 8-14. doi: 10.3889/oamjms.2023.10676.
15.    Majumdar G. Mandal S. Exploring the Inhibitory Role of Persicaria Hydropiper Bioactive Compounds Against 2KID Protein Associated with Staphylococcus aureus Biofilm Formation: Molecular Docking and Pharmacological Property Analysis. Res. J. Pharm. Technol. 2023; 16(7): 3189-3194. doi: 10.52711/0974-360X.2023.00524.
16.    Cowan M.M. Plant Products as Antimicrobial Agents. Clin Microbiol Rev. 1999; 12(4):564-582. doi: 10.1128/cmr.12.4.564.
17.    Donlan RM. Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002; 15(2): 167-193. doi: 10.1128/CMR.15.2.167-193.2002.
18.    Pratiwi SUT. Lagendijk E. Hertiani T. de Weert S. van den Hondel C. Antimicrobial effects of Indonesian Medicinal Plants Extracts on Planktonic and Biofilm Growth of Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Pharm. Pharm. Sci. 2015; 7(4): 183-191. doi: 10.4172/2376-0354.1000119.
19.    Bjarnsholt T. Givskov M. Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc L. B Biol Sci. 2007; 362(1483): 1213-1222 doi: 10.1098/rstb.2007.2046.
20.    Abbas H. Serry FME. El-Masry EM. Biofilms: The Microbial Castle of Resistance. Res. J. Pharm. Technol. 2013; 6(1).
21.    Hamzah H. Yudhawan I. Rasdianah N. Setyowati E. Nandini E. Pratiwi SUT. Clove oil has the activity to inhibit middle, maturation and degradation phase of candida tropicalis biofilm formation. Biointerface Res. Appl. Chem. 2022; 12(2): 1507-1519. doi: 10.33263/BRIAC122.15071519.
22.    Rather MA. Gupta K. Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian J. Microbiol. 2021; 52(4): 1701-1718. doi: 10.1007/s42770-021-00624-x.
23.    Hamzah H et al. Molecular Docking Study of the C-10 Massoia Lactone Compound as an Antimicrobial and Antibiofilm Agent against Candida tropicalis. Sci. World J. 2023. doi: 10.1155/2023/6697124.
24.    Mary RNI. Banu N. Inhibition of biofilm formation in Serratia marcescens by Andrographolide from Andrographis paniculata. Res. J. Pharm. Technol. 2017; 10(3): 789-791. doi: 10.5958/0974-360X.2017.00148.2.
25.    Prabhu A. Chembili V. Kandal T. Punchappady-Devasya R. Piper nigrum seeds inhibit biofilm formation in Pseudomonas aeruginosa strains. Res. J. Pharm. Technol. 2017; 10(11): 3893-3898. doi: 10.5958/0974-360X.2017.00707.7.
26.    Mary RNI. Banu N. Inhibition of Antibiofilm Mediated Virulence Factors in Pseudomonas aeruginosa by Andrographis Paniculata. Res. J. Pharm. Technol. 2017; 10(1); 141-144. doi: 10.5958/0974-360X.2017.00031.2.
27.    Tandra Das T. Gopinath. P. Biofilm Formation Among Enterococci Species. Res. J. Pharm. Technol. 2016; 9(11): 1877-1879.
28.    Utami DT. Pratiwi SUT. Haniastuti T. Hertiani T. Degradation of Oral Biofilms by Zerumbone from Zingiber zerumbet (L.). Res. J. Pharm. Technol. 2020; 13(8): 3559-3564. doi: 10.5958/0974-360X.2020.00629.0.



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available