Author(s): Maureen Miracle Stella, Gabi Vania Sally, Orlin Clarista, Sem Samuel Surja, Sandy Vitria Kurniawan, Zita Arieselia

Email(s): zita.arieselia@atmajaya.ac.id

DOI: 10.52711/0974-360X.2026.00032   

Address: Maureen Miracle Stella1, Gabi Vania Sally2, Orlin Clarista3, Sem Samuel Surja4, Sandy Vitria Kurniawan5, Zita Arieselia6*
1School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.
2School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.
3School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.
4Department of Parasitology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.
5Department of Pharmacology and Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.
6Department of Pharmacology and Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
Recently, the extensive use of azole has provoked antifungal resistance, along with the increase prevalence of fungal infections. Milk lactoferrin has been reported to show antifungal activity. This study aims to compare the antifungal activity of lactoferrin in breast milk, cow's milk, goat's milk, and infant formula milk with azole against Candida albicans, Candida krusei, and Aspergillus terreus. Lactoferrin samples were extracted from formula milk (fLf), goat's milk (gLf), cow's milk (bLf), and breast milk (hLf). Disk diffusion and microdilution techniques were used to assess antifungal activity against wild-type A. terreus, fluconazole-resistant C. albicans ATCC 10231, fluconazole-sensitive C. albicans ATCC 90028, and wild-type C. krusei. Lactoferrin has demonstrated antifungal properties through susceptibility testing. In A. terreus, C. albicans, and C. krusei, bLf generated the biggest zone of inhibition. The antifungal activity produced by bLf and hLf against C. albicans ATCC 90028 was greater than fluconazole (bLf = 32 mm; hLf = 30 mm; fluconazole = 28 mm). In addition, bLf also provides higher zone of inhibition against C. krusei than itraconazole (bLf = 34.44 mm; itraconazole = 31 mm). On microdilution, hLf exhibited the best efficacy against the three fungal strains (MIC of 0.78% for C. krusei wild type, MIC of 1.56% for C. albicans ATCC 10231, and MIC of 0.39% for C. albicans ATCC 90028). Together, azole and lactoferrin had synergistic effect against C. albicans ATCC 10231 and increased antifungal efficacy against C. albicans ATCC 90028, C. krusei, and A. terreus. Bovine and human lactoferrin showed the strongest inhibition compared with other milk lactoferrin, with bovine lactoferrin exceeding fluconazole against fluconazole-sensitive C. albicans and itraconazole against C. krusei. Human lactoferrin exhibited the lowest MICs across species and synergized with fluconazole against resistant C. albicans. These findings suggest that specific milk lactoferrin, particularly bovine and human, may serve as promising antifungal adjuvants.


Cite this article:
Maureen Miracle Stella, Gabi Vania Sally, Orlin Clarista, Sem Samuel Surja, Sandy Vitria Kurniawan, Zita Arieselia. Comparative Antifungal and Synergistic Activity of Human, Bovine, Goat and Infant Formula Milk Lactoferrin against Candida albicans, Candida krusei, and Aspergillus terreus. Research Journal of Pharmacy and Technology. 2026;19(1):223-2. doi: 10.52711/0974-360X.2026.00032

Cite(Electronic):
Maureen Miracle Stella, Gabi Vania Sally, Orlin Clarista, Sem Samuel Surja, Sandy Vitria Kurniawan, Zita Arieselia. Comparative Antifungal and Synergistic Activity of Human, Bovine, Goat and Infant Formula Milk Lactoferrin against Candida albicans, Candida krusei, and Aspergillus terreus. Research Journal of Pharmacy and Technology. 2026;19(1):223-2. doi: 10.52711/0974-360X.2026.00032   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-1-32


REFERENCES: 
1.    Janbon G, Quintin J, Lanternier F, d’Enfert C. Studying fungal pathogens of humans and fungal infections: fungal diversity and diversity of approaches. Genes Immun [Internet]. 2019; 20(5): 403–14. Available from: http://dx.doi.org/10.1038/s41435-019-0071-2
2.    Sudoyo AW, Setiyohadi B, Alwi I, Simadibrata M, Setiadi S. Buku Ajar Ilmu Penyakit Dalam Jilid 1. Interna Publishing. 2014. 1973–1983 p. 
3.    Brooks GeoF, Carroll KC, Butel JS, Morse SA, Mietzner TA. Jawetz, Melnick and Adelberg’s Medical Microbiology, 26th Edition. Journal of Chemical Information and Modeling. 2013. 1689–1699 p. 
4.    Bongomin F, Gago S, Oladele RO, Denning DW. Global and multi-national prevalence of fungal diseases—estimate precision. Journal of Fungi. 2017; 3(4). 
5.    Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases. 2015; 62(4): e1–50. 
6.    Hachem R, Gomes MZR, El Helou G, El Zakhem A, Kassis C, Ramos E, et al. Invasive aspergillosis caused by Aspergillus terreus: An emerging opportunistic infection with poor outcome independent of azole therapy. Journal of Antimicrobial Chemotherapy. 2014; 69(11): 3148–55. 
7.    Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS, Rogers PD. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species. Front Microbiol. 2017 Jan 12; 7. 
8.    Cuenca-Estrella M RTJ. The current role of the reference procedures by CLSI and EUCAST in the detection of resistance to antifungal agents in vitro Expert Review of Anti-infective. Therapy. 2010; 8: 267–76. 
9.    Pastor FJ, Guarro J. Treatment of Aspergillus terreus infections: A clinical problem not yet resolved. Int J Antimicrob Agents [Internet]. 2014; 44(4): 281–9. Available from: http://dx.doi.org/10.1016/j.ijantimicag.2014.07.002
10.    Mallina SA, Sundararajan R. Lenalidomide loaded lactoferrin nanoparticle for controlled delivery and enhanced therapeutic efficacy. Res J Pharm Technol. 2018; 11(9): 4010. 
11.    Jackalas K, Mary Mathew E. In vitro Evaluation of Sersia Lancea Root Extract for the treatment of Common Microbial Infections. Res J Pharm Technol. 2023; 4016–20. 
12.    Andersson Y, Lindquist S, Lagerqvist C, Hernell O. Lactoferrin is responsible for the fungistatic effect of human milk. Early Hum Dev. 2000; 59(2): 95–105. 
13.    de Oliveira Felipe L, Silva Júnior WF da, Araújo KC de, Fabrino DL. Lactoferrin, chitosan and Melaleuca alternifolia-natural products that show promise in candidiasis treatment. Brazilian Journal of Microbiology [Internet]. 2018; 49(2): 212–9. Available from: https://www.proquest.com/scholarly-journals/lactoferrin-chitosan-melaleuca-alternifolia/docview/2124158160/se-2?accountid=48149
14.    Długosz A, Wróblewska J, Kołaczyk P, Wróblewska W. The Role of Lactoferrin in Combating Candida spp. Infections Through Regulation of Oxidative Stress, Immune Response, and Nutritional Support in Women and Newborns. Molecules. 2025; 30(11): 2416. 
15.    Zarzosa-Moreno D, Avalos-Gómez C, Ramírez-Texcalco LS, Torres-López E, Ramírez-Mondragón R, Hernández-Ramírez JO, et al. Lactoferrin and Its Derived Peptides: An Alternative for Combating Virulence Mechanisms Developed by Pathogens. Molecules. 2020; 25(24): 5763. 
16.    Ballard E, Yucel R, Melchers WJG, Brown AJP, Verweij PE, Warris A. Antifungal activity of antimicrobial peptides and proteins against Aspergillus fumigatus. Journal of Fungi. 2020; 6(2). 
17.    Andrés MT, Acosta-Zaldívar M, Fierro JF. Antifungal mechanism of action of lactoferrin: Identification of H+-ATPase (P3A-type) as a new apoptotic-cell membrane receptor. Antimicrob Agents Chemother. 2016; 60(7): 4206–16. 
18.    Rollo DE, Radmacher PG, Turcu RM, Myers SR, Adamkin DH. Stability of lactoferrin in stored human milk. 2014; (July): 1–3. Available from: http://dx.doi.org/10.1038/jp.2014.3
19.    Hassan Abdalla, Hassan Mohamed (Al-Ain A. Method for purifying lactoferrin [Internet]. 2016. Available from: http://www.freepatentsonline.com/9458225.htm
20.    Ku HK, Lim HM, Oh KH, Yang HJ, Jeong JS, Kim SK. Interpretation of protein quantitation using the Bradford assay: Comparison with two calculation models. Anal Biochem [Internet]. 2013; 434(1): 178–80. Available from: http://dx.doi.org/10.1016/j.ab.2012.10.045
21.    Khan J, Shah AH, Nisar M, Ali N, Khan U, Khan W, et al. Evaluation of genetic diversity in black gram through SDS-PAGE. Plant Cell Biotechnol Mol Biol. 2016; 17(3–4): 87–95. 
22.    Mahala N, Mittal A, Lal M, Dubey US. Isolation and characterization of bioactive lactoferrin from camel milk by novel pH-dependent method for large scale production. Biotechnology Reports. 2022 Dec; 36: e00765. 
23.    Disk A, Susceptibility D. M44 Method for Antifungal Disk Diffusion. 
24.    Method R, Dilution B, Susceptibility A. M27 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 
25.    Flowers SA, Colón B, Whaley SG, Schuler MA, David Rogers P. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob Agents Chemother. 2015; 59(1): 450–60. 
26.    Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S, et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. Journal of Antimicrobial Chemotherapy. 2018; 73(4): 891–9. 
27.    Boonyanugomol W, Kraisriwattana K, Rukseree K. In vitro synergistic antibacterial activity of the essential oil from Zingiber cassumunar Roxb against extensively drug-resistant Acinetobacter baumannii strains. J Infect Public Health. 2017; 1–7. 
28.    Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity : A review $. J Pharm Anal. 2016; 6(2): 71–9. 
29.    Danby CS, Boikov D, Rautemaa-Richardson R, Sobel JD. Effect of pH on in vitro susceptibility of Candida glabrata and Candida albicans to 11 antifungal agents and implications for clinical use. Antimicrob Agents Chemother. 2012; 56(3): 1403–6. 
30.    Valenti P, Visca P. Interaction between lactoferrin and ovotransferrin and Candida cells. 1986; 33: 271–5. 
31.    Parc A Le, Dallas DC, Duaut S, Leonil J, Martin P, Barile D. Characterization of goat milk lactoferrin N- glycans and comparison with the N- glycomes of human and bovine milk. 2014; 1–11. 
32.    Morici P, Florio W, Rizzato C, Ghelardi E, Tavanti A, Rossolini GM, et al. Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains. European Journal of Clinical Microbiology and Infectious Diseases [Internet]. 2017 Oct; 36(10): 1739–48. Available from: https://www.proquest.com/scholarly-journals/synergistic-activity-synthetic-n-terminal-peptide/docview/1939422939/se-2?accountid=48149
33.    Lupetti A, Paulusma-annema A, Welling MM, Dogterom-ballering H, Brouwer CPJM, Senesi S, et al. Synergistic Activity of the N-Terminal Peptide of Human Lactoferrin and Fluconazole against Candida Species. 2003; 47(1): 262–7. 
34.    Kobayashi T, Kakeya H, Miyazaki T, Izumikawa K, Yanagihara K. Synergistic antifungal effect of lactoferrin with azole antifungals against Candida albicans and a proposal for a new treatment method for invasive candidiasis Synergistic Antifungal Effect of Lactoferrin with Azole Antifungals against Candida albicans an. 2011; (June 2014). 
35.    Lai YW, Campbell LT, Wilkins MR, Pang CNI, Chen S, Carter DA. Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus. Int J Antimicrob Agents [Internet]. 2016; 48(4): 388–94. Available from: http://dx.doi.org/10.1016/j.ijantimicag.2016.06.012
36.    MF N, F I, S J, LA W, NA G, T L. Quantitative Analysis of Candida Cell Wall Components by Flow Cytometry with Triple-Fluorescence Staining. Journal of Microbiology and Modern Techniques. 2017; 2(1): 1–9. 
37.    Khajuria R, Kaur L, Kaushik A, Saredia G. Evaluation of Antimicrobial and Phytochemical Properties of some Indigenous Indian plants. Research Journal of Pharmacognosy and Phytochemistry. 2014;6(1). 
38.    Malathy BR, Ajitha P S, K. S S, Thampy S, G K. Antimicrobial activity of Commercial essential oils on human pathogens. Res J Pharm Technol. 2021 Aug 6;4440–4. 
39.    Touqeer S, Saeed MA, Adnan S, Mehmood F, Ch MA. Antibacterial and Antifungal Activity of Melaleuca decora and Syngonium podophyllum. Res J Pharm Technol. 2014; 7(7). 
40.    Mansour O, Darwish M, Ismail G, Harfouch R, Ali RS, Deeb Z. Screening of Antibacterial Activity In Vitro of Eryngium creticum. Res J Pharm Technol. 2016; 9(2): 128. 
41.    Jayashree V, Anju KC, Ragavendran MP, Ravichandiran V. In Vitro antimicrobial activity using ethanolic extract of flower and stem extract of Cassia auriculata linn. Res J Pharm Technol. 2015; 8(7): 901. 
42.    Benedict K, Gow S, Reid-Smith R, Booker C, McAllister T, Morley P. Latent class comparison of test accuracy when evaluating antimicrobial susceptibility using disk diffusion and broth microdilution to test Escherichia coli and Mannheimia haemolytica isolates recovered from beef feedlot cattle. Epidemiol Infect. 2014; 142(11). 
43.    Velvizhi D, Karthick D, Ilavarasan R. Antibacterial activity, GC-MS and TLC/HPTLC Fingerprint analysis of Plectranthus vettiveroides (Jacob) N.P. Singh and B.D. Sharma -An endemic plant in South India. Res J Pharm Technol. 2020; 13(7): 3372. 
44.    Nuraskin CA, Reca R, Wirza W, Mardiah A, Suhendra R, Faisal I, et al. Effectiveness of Guava Leaf Steep water against the bacterial growth of S. Mutans with Microdillution Method. Res J Pharm Technol. 2021; 5745–8. 
45.    Rezeki S, A. Gani B, Abdat M, Andayani R, Yunita Batubara F, Asmah N, et al. The Measurement of Candida albicans Tolerance under The Influence of Moringa oleifera. Res J Pharm Technol. 2023; 2579–83. 
46.    Raaman N, Selvarajan S, Balakrishnan D, Balamurugan G. Preliminary Phytochemical Screening, Antimicrobial activity and Nutritional Analysis of Methanol Extract of Asparagus racemosus (Willd) Roots. Res J Pharm Technol. 2009; 2–4. 

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available