Author(s): Meryem Chennaq, Zineb Aliat, Safae Elmedkouri, Ali Cherif Chefchaouni, Nadia ou-kheda, Aicha Fahry, Abdelkader Laatiris, Nawal Cherkaoui, Karim souly, Yassir Alaoui, Younes Rahali

Email(s): meryemchennaq12@gmail.com

DOI: 10.52711/0974-360X.2026.00031   

Address: Meryem Chennaq1,2, Zineb Aliat1,2, Safae Elmedkouri1,2, Ali Cherif Chefchaouni1,2, Nadia ou-kheda1,2,4, Aicha Fahry1,2,3, Abdelkader Laatiris1,2,3, Nawal Cherkaoui1,2,3, Karim souly1,2,4, Yassir Alaoui1,2,3, Younes Rahali1,2,3
1Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco.
2Ibn Sina University Hospital Center, 10 170 Rabat, Morocco.
3Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco.
4Central Bacteriology Laboratory, CHU Ibn Sina, Rabat.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
Introduction: Propofol (2,6-diisopropylphenol) is a potent intravenous hypnotic widely used for the induction and maintenance of general anesthesia and sedation in various medical settings. Despite its widespread use, propofol emulsions, formulated as oil-in-water (O/W) due to its low solubility in water, pose formulation-related challenges. Emulsion stability is critical to prevent phase separation and droplet aggregation, which can lead to embolisms. This study builds upon a previous investigation assessing the stability of propofol emulsions up to six months post-expiration, extending the evaluation to three years after expiry by examining visual appearance, pH, droplet diameter, sterility and zeta potential. Methods: Fifteen ampoules of Propofol (Propofol Fresenius, 10 mg/ml) from the same batch, expired for three years, were used. Stability measurements included visual observation, pH, droplet diameter, polydispersity index, sterility, and zeta potential. The study was conducted under ICH Q1A storage conditions (30°C ± 2°C). Samples were prepared and analyzed using a Zeta nanosizer v6.12 (Malvern Instrument) for droplet size and zeta potential, and an Eutech pH meter 510 for pH measurements. Sterility testing, performed according to USP <71> guidelines, while statistical analyses using Jamovi software (version 2.6.2). Results were compared to the previous study conducted six months after expiration to identify trends in galenic stability. Results: No phase separation or visible particles were observed in any of the six tubes during visual examination. The mean droplet diameter ranged from 94.42 nm to 106.37 nm, significantly lower than the 109.52–125.15 nm reported in the six-month post-expiration study, reflecting enhanced galenic stability over time. The polydispersity index ranged from 0.14 to 0.16, also lower compared to the previous study, indicating improved droplet uniformity. The pH measured between 6.85 and 7.07, and the zeta potential ranged from -42.7 mV to 68.9 mV, with trends consistent with the earlier findings. All samples maintained unimodal droplet size distribution, aligning with USP guidelines for injectable lipid emulsions. Additionally, sterility testing confirmed the absence of microbial contamination in all samples, further supporting their safety and stability over time. Conclusion: The propofol emulsion demonstrated galenic stability up to three years post-expiration, showing consistent improvements in droplet diameter and uniformity compared to the six-month study. These results suggest the potential for post-expiry use of propofol emulsions in emergency situations, particularly during shortages. Further comprehensive stability studies, including bacterial endotoxin detection, and an assay of the active substance to detect any potential degradation are recommended to ensure the safety and efficacy of post-expiry use.


Cite this article:
Meryem Chennaq, Zineb Aliat, Safae Elmedkouri, Ali Cherif Chefchaouni, Nadia ou-kheda, Aicha Fahry, Abdelkader Laatiris, Nawal Cherkaoui, Karim souly, Yassir Alaoui, Younes Rahali. Galenic Stability of Propofol Emulsions After Expiry: Assessment After 3 Years. Research Journal of Pharmacy and Technology. 2026;19(1):215-2. doi: 10.52711/0974-360X.2026.00031

Cite(Electronic):
Meryem Chennaq, Zineb Aliat, Safae Elmedkouri, Ali Cherif Chefchaouni, Nadia ou-kheda, Aicha Fahry, Abdelkader Laatiris, Nawal Cherkaoui, Karim souly, Yassir Alaoui, Younes Rahali. Galenic Stability of Propofol Emulsions After Expiry: Assessment After 3 Years. Research Journal of Pharmacy and Technology. 2026;19(1):215-2. doi: 10.52711/0974-360X.2026.00031   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-1-31


REFERENCES:
1.    Thompson KA, Goodale DB. The recent development of propofol (DIPRIVAN). Intensive Care Med. 2000; 26 Suppl 4:S400-404. doi:10.1007/pl00003783
2.    Schuttler J, Schwilden H. Modern Anesthetics. New York, NY: Springer, 2008; 344–5.
3.    Baker MT, Naguib M, Warltier DC. Propofol: The Challenges of Formulation. Anesthesiology. 2005; 103(4): 860-876. doi:10.1097/00000542-200510000-00026
4.    Bryson HM, Fulton BR, Faulds D. Propofol. An update of its use in anaesthesia and conscious sedation. Drugs. 1995; 50(3): 513-559. doi:10.2165/00003495-199550030-00008
5.    Joo HS, Perks WJ. Sevoflurane versus propofol for anesthetic induction: a meta-analysis. Anesth Analg. 2000; 91(1): 213-219. doi:10.1097/00000539-200007000-00040
6.    Park JW, Park ES, Chi SC, Kil HY, Lee KH. The effect of lidocaine on the globule size distribution of propofol emulsions. Anesth Analg. 2003; 97(3): 769-771. doi:10.1213/01.ANE.0000074797.70349.CA
7.    Bennett SN, McNeil MM, Bland LA, et al. Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med. 1995; 333(3): 147-154. doi:10.1056/NEJM199507203330303
8.    Tan CH, Onsiong MK. Pain on injection of propofol. Anaesthesia. 1998; 53(5): 468-476. doi:10.1046/j.1365-2044.1998.00405.x
9.    Damitz R, Chauhan A, Gravenstein N. Propofol emulsion-free drug concentration is similar between batches and stable over time. Romanian J Anaesth Intensive Care. 2016; 23(1): 7-11. doi:10.21454/rjaic.7518.231.emf
10.    Folino TB, Muco E, Safadi AO, Parks LJ. Propofol. In: StatPearls. StatPearls Publishing; 2024. Accessed July 30, 2024. http://www.ncbi.nlm.nih.gov/books/NBK430884/
11.    Mathialagan V, Sugumaran A, Narayanaswamy D. Nanoemulsion: Importance in Pharmaceutical Nanotechnology. Res J Pharm Technol. 2020; 13(4): 2005-2010. doi:10.5958/0974-360X.2020.00361.3
12.    Briggs LP, Clarke RS, Watkins J. An adverse reaction to the administration of disoprofol (Diprivan). Anaesthesia. 1982; 37(11): 1099-1101. doi:10.1111/j.1365-2044.1982.tb01753.x
13.    Ilium L, Davis SS, Wilson CG, Thomas NW, Frier M, Hardy JG. Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape. Int J Pharm. 1982; 12(2): 135-146. doi:10.1016/0378-5173(82)90113-2
14.    Chefchaouni AC, Bennani I, Baraka SE, et al. Evaluation of the Galenic stability of a Propofol Emulsion after the Expiration date. Res J Pharm Technol. 2023; 16(11): 4993-4998. doi:10.52711/0974-360X.2023.00808
15.    Bhagat BV, Rachh PR. Lipid Based Non-Aqueous Nano Emulsions: A Review. Res J Pharm Technol. 2020; 13(8): 4009-4014. doi:10.5958/0974-360X.2020.00709.X
16.    D A, Prakash H, Gb B, N M. Nano-novel approach: Self Nano Emulsifying Drug Delivery System (SNEDDS) - Review Article. Res J Pharm Technol. 2020; 13(2): 983-990. doi:10.5958/0974-360X.2020.00183.3
17.    Costa C, Medronho B, Filipe A, et al. Emulsion Formation and Stabilization by Biomolecules: The Leading Role of Cellulose. Polymers. 2019; 11(10): 1570. doi:10.3390/polym11101570
18.    Surface Chemistry of Surfactants and Polymers | Wiley. Accessed January 28, 2025. https://www.wiley.com/en-it/Surface+Chemistry+of+Surfactants+and+Polymers-p-9781119961246
19.    Brown R, Quercia RA, Sigman R. Total nutrient admixture: a review. JPEN J Parenter Enteral Nutr. 1986; 10(6): 650-658. doi:10.1177/0148607186010006650
20.    Shelar KU, Rao JR, Dhale C. Stability indicating HPTLC method development and validation for the estimation of celecoxib in bulk drug and its Pharmaceutical formulation. Res J Pharm Technol. 2020; 13(8): 3661-3665. doi:10.5958/0974-360X.2020.00647.2
21.    Lipid Injectable Emulsion. doi:10.31003/USPNF_M32635_03_01
22.    〈729〉 Globule Size Distribution in Lipid Injectable Emulsions. doi:10.31003/USPNF_M99505_02_01
23.    Kokkirala TK, Suryakala D. Stability indicating RP-HPLC Method development and Validation for the Estimation of Sofosbuvir, Velpatasvir and Voxilaprevir in Bulk and Pharmaceutical dosage form. Res J Pharm Technol. 2020; 13(11): 5063-5071. doi:10.5958/0974-360X.2020.00887.2
24.    Driscoll DF. Globule-size distribution in injectable 20% lipid emulsions: Compliance with USP requirements. Am J Health-Syst Pharm AJHP Off J Am Soc Health-Syst Pharm. 2007; 64(19): 2032-2036. doi:10.2146/ajhp070097
25.    Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development | Request PDF. Accessed July 30, 2024. https://www.researchgate.net/publication/330338751_Importance_of_Physicochemical_Characterization_of_Nanoparticles_in_Pharmaceutical_Product_Development
26.    Han J, Davis SS, Washington C. Physical properties and stability of two emulsion formulations of propofol. Int J Pharm. 2001; 215(1-2): 207-220. doi:10.1016/s0378-5173(00)00692-x
27.    Adhikary T, Basak P. Extraction and separation of oils: the journey from distillation to pervaporation. In: 2022: 511-535. doi:10.1016/B978-0-323-89978-9.00026-4
28.    Washington C, Chawla A, Christy N, Davis SS. The electrokinetic properties of phospholipid-stabilized fat emulsions. Int J Pharm. 1989; 54(3): 191-197. doi:10.1016/0378-5173(89)90096-3
29.    Plant-derived biomaterials for wound healing | Request PDF. Accessed July 30, 2024. https://www.researchgate.net/publication/354233960_Plant-derived_biomaterials_for_wound_healing
30.    Washington C. Stability of lipid emulsions for drug delivery. Adv Drug Deliv Rev. 1996; 20(2): 131-145. doi:10.1016/0169-409X(95)00116-O
31.    21 CFR Part 211 -- Current Good Manufacturing Practice for Finished Pharmaceuticals. Accessed July 30, 2024. https://www.ecfr.gov/current/title-21/part-211
32.    Cantrell L, Suchard JR, Wu A, Gerona RR. Stability of active ingredients in long-expired prescription medications. Arch Intern Med. 2012; 172(21): 1685-1687. doi:10.1001/archinternmed.2012.4501
33.    Watrobska-Swietlikowska D. Stability of commercial parenteral lipid emulsions repacking to polypropylene syringes. PloS One. 2019;14(4):e0214451. doi:10.1371/journal.pone.0214451
34.    Hippalgaonkar K, Majumdar S, Kansara V. Injectable lipid emulsions-advancements, opportunities and challenges. AAPS PharmSciTech. 2010; 11(4): 1526-1540. doi:10.1208/s12249-010-9526-5
35.    Lu GW, Gao P. Emulsions and Microemulsions for Topical and Transdermal Drug Delivery. In: Handbook of Non-Invasive Drug Delivery Systems. 2010: 59-94. doi:10.1016/B978-0-8155-2025-2.10003-4
36.    Suryani, Sahumena MH, Mabilla SY, et al. Preparation and Evaluation of Physical Characteristics of Vitamin E Nanoemulsion using virgin coconut Oil (VCO) and olive oil as oil phase with variation Concentration of tween 80 Surfactant. Res J Pharm Technol. 2020; 13(7): 3232-3236. doi:10.5958/0974-360X.2020.00572.7
37.    Mukherjee S, Maity S, Ghosh B, Mondal A. Accelerated Stability study of Preformulated glyburide loaded Lyophilized lipid Nanoparticles. Res J Pharm Technol. 2020; 13(7): 3323-3325. doi:10.5958/0974-360X.2020.00589.2
38.    RJPT - A Modified stability Indicating liquid Chromatographic method Development and validation for the Estimation of clopidogrel and Rosuvastatin in bulk and Tablet Dosage Forms. Accessed April 14, 2025. https://rjptonline.org/AbstractView.aspx?PID=2020-13-3-49
39.    RJPT - Formulation and Evaluation of Colon Targeted Enteric Coated Tablets of Loperamide. Accessed April 14, 2025. https://www.rjptonline.org/AbstractView.aspx?PID=2020-13-3-69
40.    Bhole RP, Jagtap SR, Chadar KB, Zambare YB. Review on Hyphenation in HPTLC-MS. Res J Pharm Technol. 2020; 13(2): 1028-1034. doi:10.5958/0974-360X.2020.00189.4

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available