Author(s):
Komariah Cicih, Adisa J. Rizkya, Syihab M. Iffan, Setianto H. Tri
Email(s):
cicihkomariah@unej.ac.id
DOI:
10.52711/0974-360X.2026.00003
Address:
Komariah Cicih*, Adisa J. Rizkya, Syihab M. Iffan, Setianto H. Tri
*Department of Pharmacology, Faculty of Medicine, Jember University, Jember, Indonesia.
Medical Study Program, Faculty of Medicine, Universitas Jember, Jember, Indonesia.
*Corresponding Author
Published In:
Volume - 19,
Issue - 1,
Year - 2026
ABSTRACT:
Chlorpyrifos (CPF) is an organophosphate insecticide widely used to control insect pests. Its notably high import rate in Indonesia indicates its popularity among farmers. In the human body, CPF's active metabolite is long-lasting and can elevate reactive oxygen species (ROS) levels, leading to oxidative stress. This oxidative stress subsequently induces autophagy, a catabolic process in which cells degrade and recycle their components within the lysosome, including in the eye lens. This study aims to demonstrate the induction of autophagy in the lenses of Wistar rats exposed to CPF, as evidenced by ROS levels indicated by measurements of MDA, SOD expression, H2O2, mTOR, LC3-II, p62, IL-1ß, and caspase-3 in lens tissue. This study utilizes a true experimental design with a post-test-only control group arrangement and took place in the Pharmacology Laboratory of the Faculty of Medicine at the University of Jember. A total of 24 male Wistar rats were utilized, separated into two groups: a control group and a treatment group that was administered CPF at a dosage of 5 mg/kg body weight each day via oral gavage for 14 days. Measurements of MDA, SOD, and H2O2 levels in the eye lenses were obtained using enzymatic colorimetric methods. Additionally, mTOR levels were assessed through Western Blot, while LC3-II, p62, IL-1ß, and caspase-3 levels were measured using ELISA. The t-test results show that there is no significant difference between the control and treatment groups for the ROS, SOD, and H2O2 variables (p > 0.05). On the other hand, for the p62, IL-1ß, LC3-II, Caspase-3, and mTOR variables, there are significant differences between the control and treatment groups (p < 0.05). These findings substantiate that exposure to the organophosphate pesticide CPF can induce autophagy in the eye lens.
Cite this article:
Komariah Cicih, Adisa J. Rizkya, Syihab M. Iffan, Setianto H. Tri. Autophagy Induction in Wistar Rat Lens by Organophosphate Pesticide. Research Journal of Pharmacy and Technology. 2026;19(1):19-6. doi: 10.52711/0974-360X.2026.00003
Cite(Electronic):
Komariah Cicih, Adisa J. Rizkya, Syihab M. Iffan, Setianto H. Tri. Autophagy Induction in Wistar Rat Lens by Organophosphate Pesticide. Research Journal of Pharmacy and Technology. 2026;19(1):19-6. doi: 10.52711/0974-360X.2026.00003 Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-1-3
REFERENCES:
1. Liem, J. F., Mansyur, M., Soemarko, D. S., Kekalih, A., Subekti, I., Suyatna, F. D., et al. Cumulative Exposure Characteristics of Vegetable Farmers Exposed to Chlorpyrifos in Central Java–Indonesia. BMC Public Health. 2021; 21(1066): 1-9.
2. Wolejko, E. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. International Journal of Environmental Research and Public Health Review. 2022; 19(19): 1-25.
3. Ubaid Ur Rahman, H., Asghar, W., Nazir, W., Sandhu, M. A., Ahmed, A., and Khalid, N. A Comprehensive Review on Chlorpyrifos Toxicity with Special Reference to Endocrine Disruption: Evidence of Mechanisms, Exposures and Mitigation Strategies. Science of the Total Environment. 2020.
4. Kaur, J., Kukreja, S., Kaur, A., Malhotra, N., and Kaur, R. The Oxidative Stress in Cataract Patients. Journal of Clinical and Diagnostic Research. 2012; 6(10): 1629-1632.
5. Alanazi, I. S., Altyar, A. E., Zaazouee, M. S., Elshanbary, A. A., Abdel Fattah, M., Kamel, M., et al. Effect of Moringa Seed Extract in Chlorpyrifos-Induced Cerebral and Ocular Toxicity in Mice. Frontiers in Veterinary Science. 2024; 11: 1–9.
6. Galluzzi, L., Baehrecke, E.H., Ballabio, A., Boya, P., Bravo-San, P.J.M, et al. Molecular Definitions of Autophagy and Related Processes. EMBO J. 2017; 36(13): 1811-1836.
7. He, L., Zhang, J., Zhao, J., Ma, N., Kim, S. W., Qiao, S., Ma, X. Autophagy: The Last Defense against Cellular Nutritional Stress. Advances in Nutrition. 2018; 9(4): 493-504.
8. Wong, P.M., Puente, C., Ganley, I.G., Jiang, X. The ULK1 Complex: Sensing Nutrient Signals for Autophagy Activation’. Autophagy. 2013; 9(2): 124-137.
9. Feng, Y., He, D., Yao, Z., Klionsky, DJ. The Machinery of Macroautophagy. Cell Res. 2014; 24(1): 24-41. doi.org/10.1038/cr.2013.168
10. Puertollano, R., Ferguson, S.M., Brugarolas, J., Ballabio, A. The Complex Relationship between TFEB Transcription Factor Phosphorylation and Subcellular Localization. EMBO J. 2018; 37(11).
11. Mizushima, N., Levine, B. Autophagy in Human Diseases. N Engl J Med. 2020; 383(16):1564-1576.
12. Gao, Q. Oxidative Stress and Autophagy. Adv Exp Med Biol. 2019; 1206: 179-198.
13. Knoferle, J., Koch, J.C., Ostendorf, T., Michel, U., Planchamp, V., Vutova, P., Tonges, L., Stadelmann, C., Bruck, W., Bahr, M et al. Mechanisms of Acute Axonal Degeneration in the Optic Nerve in Vivo. Proc. Natl. Acad. Sci. 2010; 107:6064-6069.
14. Li, W., Li, J., Bao, J. Microautophagy: Lesser-Known Self-Eating’. Cell. Mol.Life Sci. 2012; 69: 1125-1136.
15. Adhikary, K., Sarkar, R., Chatterjee, P., Chowdhury, S. R., Karak, P., Ahuja, D., Maiti, R. The Homeostatic Phyto-defense Mechanism for Reactive Oxygen Species under Environmental Stress Conditions: A Review. Research Journal of Pharmacy and Technology. 2024; 17(7): 3505-3.
16. Settembre, C., Di Malta, C., Polito, V.A., Garcia, A.M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P et al. TFEB Links Autophagy to Lysosomal Biogenesis. Sci. 2011; 332(6036): 1429-1433.
17. Yang, X., Pan, X., Zhao, X., Luo, J., Xu, M., Bai, D., Hu, Y., Liu, X., Yu, Q., Gao, D. Autophagy and Age-Related Eye Diseases. Biomed. Res. Int. 2019; 1-12. doi.org/10.1155/2019/5763658
18. Soebagjo, H. D., Fatmariyanti, S., Sugianto, P., Purwanto, P., Bintoro, U. Y., Kusumowidagdo, E.R. Detection of the Calcium and ATP Role in Apoptosis of Retinoblastoma Culture Cells through Caspase-3 Expression. Research J. Pharm. and Tech. 2019; 12(3): 1307-1314.
19. Sirois, I., Groleau, J., Pallet, N., Brassard, N., Hamelin, K., Londono, I., Pshezhetsky, A.V., Bendayan, M., Hébert, M.J. Caspase Activation Regulates the Extracellular Export of Autofagik Vacuoles. Autophagy. 2012; 8(6): 927-937. doi.org/10.4161/auto.19768
20. Frety, E. E., Soehato, S., Sujuti, H., Dewi. E. R. Effect of Oral Applied Lead Acetate on the Expression of Caspase-3 on Antral Granulosa Cells and Histopathology of Ovary in Female Wistar Rat (Rattus Norvegicus) Ovaries. Research Journal of Pharmacy and Technology. 2021; 14(11): 6007-1.
21. Wirawan, E., Vande, W.L., Kersse, K., Cornelis, S., Claerhout, S., Vanoverberghe, I., Roelandt, R., De, R.R., Verspurten, J., Declercq, W., Agostinis, P., Vanden, B.T., Lippens, S., Vandenabeele, P. Caspase-Mediated Cleavage of Beclin-1 Inactivates Beclin-1-Induced Autophagy and Enhances Apoptosis by Promoting the Release of Proapoptotic Factors from Mitochondria. Cell Death Dis. 2010; 1(1).
22. Hamzah, S. K., Jabbar, N. K., Almzaiel A. J., Sabit, R. A. The Role Caspase-8 and DNA Methylation in patients with Ovarian Cancer: Relationship with Oxidative Stress and Inflammation. Research Journal of Pharmacy and Technology. 2021; 14(5): 2676-0.
23. Zhang, L., Wang, K., Lei, Y., Li, Q., Nice, E.C., and Huang, C. Redox Signaling: Potential Arbitrator of Autophagy and Apoptosis in Therapeutic Response. Free Radical Biology and Medicine. 2015; 89: 452-465.
24. Divyadharsini, V., Sankari, M. Effect of Smoking on Interleukin- 1 and Reactive Oxygen Species in Periodontitis. Research J. Pharm. and Tech. 2018; 11(3): 1247-1250.
25. Harris, J., Autophagy and IL-1 Family Cytokines. Front. 2013; 4(83).
26. Alkahtane, A. A., Ghanem, E., Bungau, S. G., Alarifi, S., Ali, D., Albasher, G., et al. Carnosic Acid Alleviates Chlorpyrifos-Induced Oxidative Stress and Inflammation in Mice Cerebral and Ocular Tissues. Environmental Science and Pollution Research. 2020.
27. Netter, F. H. Altas Human Anatomy. Elsevier. 2019; 7th Edition: 103
28. Chang, K.C., Liu, P.F., Chang, C.H., Lin, Y.C., Chen, Y.J., Shu, C.W. The Interplay of Autophagy and Oxidative Stress in the Pathogenesis and Therapy of Retinal Degenerative Diseases. Cell Biosci. 2022; 12(1), 1.
29. Dorman, M., Borr, C., Mas-Bargues, C., and Escriv, C. Lipid Peroxidation as Measured by Chromatographic Determination of Malondialdehyde. Human Plasma Reference Values in Health and Disease. Archives of Biochemistry and Biophysics, 2021; 709.
30. Hsueh, Y., Chen, Y., Tsao, Y., Cheng, C., Wu, W., and Chen, H. The Pathomechanism, Antioxidant Biomarkers, and Treatment of Oxidative Stress-Related Eye Diseases. International Journal of Molecular Sciences. 2022; 23(3).
31. Luqman, E. M., Widjiati, Mafruchati, M., Rahardjo, B. P. S., Hestianah, E. P. Crosstalk between Necrosis and Apoptosis of Embryonal Cerebral Cortex Neuron Mice (Mus musculus) Caused by Carbofuran Exposure. Research J. Pharm. and Tech. 2019; 12(11): 5492-5498.
32. Rosa, A. C., Corsi, D., Cavi, N., Bruni, N., and Dosio, F. Superoxide Dismutase Administration: A Review of Proposed Human Uses. Molecules. 2021; 26(7): 1–40.
33. Lou, M. F. Glutathione and Glutaredoxin in Redox Regulation and Cell Signaling of the Lens. Antioxidants. 2022; 11(10): 1973.
34. Han, Y., Liu, T., Wang, J., Wang, J., Zhang, C., and Zhu, L. Genotoxicity and Oxidative Stress Induced by the Fungicide Azoxystrobin in Zebrafish (Danio Rerio) Livers. Pesticide Biochemistry and Physiology. 2016; 133: 13–19.
35. Imam, A., Sulaiman, N. A., Oyewole, A. L., Chengetanai, S., Williams, V., Ajibola, M. I., Folarin, R.O., Muhammad, A. S., Shittu, S. T., Ajao, M. S. Chlorpyrifos- and Dichlorvos-Induced Oxidative and Neurogenic Damage Elicits Neuro-Cognitive Deficits and Increases Anxiety-Like Behavior in Wild-Type Rats. Toxics. 2018; 1: 6(4):71.
36. Wong, P.M., Puente, C., Ganley, I.G., Jiang, X. The Ulk1 Complex: Sensing Nutrient Signals for Autophagy Activation. Autophagy. 2013; 9(2): 124-137.
37. Hu, C., Zhao, L., Shen, M., Wu, Z., Li, L., 2020. ‘Autophagy regulation is an effective strategy to improve the prognosis of chemically induced acute liver injury based on experimental studies’. J Cell Mol Med. 2020; 24(15): 8315-8325.
38. Duran, A., Amanchy, R., Linares, J.F., Joshi, J., Abu-Baker, S., Porollo, A., Hansen, M., Moscat, J., Diaz-Meco, M.T. p62 is a Key Regulator of Nutrient Sensing in the Mtorc1 Pathway’. Mol cell. 2011; 44(1): 134–146.
39. Komatsu, M., Wang, Q.J., Holstein, G.R., Friedrich, V.L., Iwata, J., Kominami, E., Chait, BT., Tanaka, K., Yue, Z. Essential Role for Autophagy Protein Atg7 in the Maintenance of Axonal Homeostasis and the Prevention of Axonal Degeneration. Proc Natl Acad Sci. 2007;104(36): 14489-94.
40. Khare, P., Kishore, K., Sharma, D. K. Catalase and Superoxide Dismutase (SOD) activity in Swiss Albino mice treated with Ethanolic leaf extract of Bauhinia variegata. Research J. Pharm. and Tech. 2019; 12(9): 4259-4262.
41. More, V. P., Jagtap, P. N., Musale, S. K., Kadam, A. M., Bobade, S. S., Dattatray, K. P. Pathophysiology, Diagnosis and Management of Cataract. Asian Journal of Pharmaceutical Research. 2024; 14(1): 77-2.
42. Lopez, A., Fleming, A., Rubinsztein, D. Seeing is Believing: Methods to Monitor Vertebrate Autophagy in Vivo. Open Biol. 2018; 8, 180106.
43. Blevins, H.M., Xu, Y., Biby, S., Zhang, S. ‘The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front Aging Neurosci. 2022; 14.
44. Harris, J., Hartman, M., Roche, C., Zeng, S.G., O'Shea, A., Sharp, F.A., Lambe, E.M., Creagh, E.M., Golenbock, D.T., Tschopp, J., Kornfeld, H., Fitzgerald, K.A., Lavelle, E.C. Autophagy Controls IL-1 Beta Secretion by Targeting Pro-IL-1beta for Degradation’. J. Biol. Chem. 2011; 286(11): 9587–9597.
45. Zhao, S., Chen, F., Yin, Q., Wang, D., Han, W., Zhang, Y. Reactive Oxygen Species Interact with NLRP3 Inflammasomes and are Involved in the Inflammation of Sepsis: from Mechanism to Treatment of Progression. Front Physiol. 2020; 11.
46. Godfrey, A., Aisharwya, N. M., Babiker, B., Gitima, D. Role of interleukin -1β in pancreatic islet cells dysfunction and apoptosis in pancreatic islet transplantation. Research J. Pharm. and Tech. 2020; 13(8): 3947-3951.
47. Fan, Y.J., Zong, W.X. The Cellular Decision between Apoptosis and Autophagy. Chin J Cancer. 2012; 32(3): 121-129.
48. Cahyana, N. W., Widjajanto, E., Kalsum, U., Prayitnaningsih, S. Effect of Catechin Isolate from GMB4 Clone Green Tea on Oxidative Stress and Apoptosis in Experimental Cataract. Research J. Pharm. and Tech. 2020; 13(10): 4811-4816.
49. Young, M.M., Takahashi, Y., Khan, O. Autophagosomal Membrane Serves as Platform for Intracellular Death Inducing Signaling Complex (Idisc)-Mediated Caspase-8 Activation and Apoptosis. J Biol Chem. 2012; 287: 12455-12468.