Author(s): Rania Abdel-Razik, Amr A. El-Waseif, Neveen M. El-Metwally

Email(s): amrelwaseif@azhar.edu.eg

DOI: 10.52711/0974-360X.2026.00029   

Address: Rania Abdel-Razik1, Amr A. El-Waseif 2*, Neveen M. El-Metwally1
1Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Institute, National Research Centre, Dokki, Giza, Egypt 12622.
2Botany and Microbiology Dept, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
Probiotic bacteria have shown the capacity to reduce cholesterol levels through a variety of processes, including cholesterol assimilation, bile salt hydrolase action, and cell outer layer buildup. The goal of the research was to pinpoint three hypocholesterolemic processes in the Lactobacillus reuteri strain, using the multifactorial statistical Plackett-Burman Design (PBD) to improve cholesterol uptake conditions. The PBD was used to investigate the effects of five parameters on cholesterol assimilation. The results demonstrated that the greatest level of cholesterol assimilation (97%) occurred at the level of cholesterol 100 mg/dl, incubation time 24 hours, bill salt concentrations 0.5%, pH 6.5, and inoculum size 200 µl at 30 oC in MRS broth. Bile salt hydrolase (BSH) efficiency was assessed using both qualitative and quantitative methods. The activity of the BSH enzyme was assessed qualitatively by examining zones of precipitation on the growing medium. Additionally, a quantitative assessment was performed at 570 nm using a UV-vis spectrophotometer. The diameter of the precipitation zones was (2, 4, 6, 6 and 9 mm) for bile salt levels of (0.1, 0.2, 0.3, 0.4, and 0.5%). The quantitative values of BSH enzyme activity were found to be 18.83 U/mL for sodium thioglycocholate substrate. Scanning electron microscope images (SEM) confirmed that cholesterol had adhered to the bacterial cell wall. Referring to the SEM results of probiotic strains, In the cholesterol-containing medium made for this experiment, Lactobacillus reuteri had a nearly empty and smooth morphology. The findings suggested that lactobacilli might eliminate cholesterol in vitro via a variety of pathways and may have similar hypocholesterolemic effects in vivo.


Cite this article:
Rania Abdel-Razik, Amr A. El-Waseif, Neveen M. El-Metwally. Assessment Strategy In vitro of Hypocholesterolemic Mechanisms of Probiotic Lactobacillus reuteri. Research Journal of Pharmacy and Technology. 2026;19(1):193-0. doi: 10.52711/0974-360X.2026.00029

Cite(Electronic):
Rania Abdel-Razik, Amr A. El-Waseif, Neveen M. El-Metwally. Assessment Strategy In vitro of Hypocholesterolemic Mechanisms of Probiotic Lactobacillus reuteri. Research Journal of Pharmacy and Technology. 2026;19(1):193-0. doi: 10.52711/0974-360X.2026.00029   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-1-29


REFERENCES:
1.    Yang J. Wang L. Jia R. Role of de novo cholesterol synthesis enzymes in cancer. Journal of Cancer. 2020; 11(7): 1761- 1766.‏ doi: 10.7150/jca.38598
2.    Zhong V. Van Horn W. Cornelis L. Wilkins MC. Ning JT. Carnethon H. Allen NB. Associations of dietary cholesterol or egg consumption with incident cardiovascular disease and mortality. Jama; 2019; 321(11): 1081-1095.‏ doi:10.1001/jama.2019.1572 
3.    Shanthi V. Borgia J.F. Bhavani S. Sathya M. Inhibitory Effects of Lactobacillus Species against Human Pathogens. Research Journal of Pharmacognosy and Phytochemistry. 2011; 3(4): 174-177. doi: 10.5958/0975-4385 
4.    Patel AK. Singhania RR. Pandey A. Chincholkar SB. Probiotic bile salt hydrolase: current developments and perspectives. Applied Biochemistry and Biotechnology. 2010; 162: 166-180. https://doi.org/10.1007/s12010-009-8738-1
5.    Shehata MG. El-Sahn MA. El Sohaimy SA. Youssef MM. In vitro assessment of hypocholesterolemic activity of Lactococcus lactis subsp. lactis. Bulletin of the National Research Centre. 2019; 43(1): 1-10. https://doi.org/10.1186/s42269-019-0090-1
6.    Brashears MM. Gilliland S.E. Buck LM. Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. Journal of Dairy Science. 1998; 81(8): 2103-2110. https://doi.org/10.3168/jds.S0022-0302(98)75785-6
7.    Johnson DD. Eastridge JS. Neubauer DR. McGowan CH. Effect of sex class on nutrient content of meat from young goat. Journal of Animal Science. 1995; 73(1): 296-301. https://doi.org/10.2527/1995.731296x 
8.    Kimoto H. Ohmomo S. Okamoto T. Cholesterol removal from media by Lactococci. Journal of Dairy Science. 2002; 85(12): 3182-3188. https://doi.org/10.3168/jds.S0022-0302(02)74406-8
9.    Fazeli H. Moshtaghian J. Mirlohi M. Shirzad M. Reduction in serum lipid parameters by incorporation of a native strain of Lactobacillus Plantarum A7 in Mice. Journal of Diabetes and Metabolic Disorders. 2010; 9: 22. 
10.    El-Waseif AA. Abobaker RA. Abdel-Monem MO. Attia AA. Hassan MG. The Lactobacillus brevis Prebiotic Pure Exopolysaccharide and its Nano crystalline Characterization, anti-colon cancer and cytotoxicity. Research Journal of Pharmacy and Technology. 2021; 14(11): 5998-6002.‏ doi : 10.52711/0974-360X.2021.01042
11.    Abd-Elwahed ES. El-Waseif AA. Maany DA. Biosynthesis and FPLC purification of antibacterial peptide from the biotherapeutic agent Enterococcus faecium. Egyptian Pharmaceutical Journal. 2023; 22(2): 202-208.‏ doi.10.4103/EPJ.EPJ_143_22
12.    Hegazy AW. El-Waseif AA. Maany DA. Isolation, characterization, and molecular identification of probiotics showing promising hypoglycemia operating activities. Egyptian Pharmaceutical Journal. 2023; 22(1): 105-110.‏ doi.10.4103/EPJ.EPJ_137_22
13.    Sedláčková P. Horáčková Š. Shi T. Kosová M. Plocková M. Two different methods for screening of bile salt hydrolase activity in Lactobacillus strains. Czech Journal of Food Sciences. 2015; 33(1).‏ doi: 10.17221/299/2014-CJFS
14.    De Man JC. Rogosa D. Sharpe ME. A medium for the cultivation of lactobacilli. Journal of Applied Microbiology, 1960; 23(1): 130-135. https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
15.    El-Waseif AA, Shehata AZ, Waheeb HO, El-Ghwas DE. Correlation of probiotic synthesis nanoparticles against rift valley fever vector, Culex antennatus becker (Diptera: Culicidae). Research Journal of Pharmacy and Technology. 2023; 16(6): 2969-2974.‏ doi : 10.52711/0974-360X.2023.00490
16.    Hassan MG, El-Waseif AA, Abd El gawad RH, Arief OM, El-Maaty SA. Assessment of Antibacterial, Cytotoxicity and Wound Healing Influence of Copper Nanoparticles Synthesized using Probiotic Bacteria. Research Journal of Pharmacy and Technology. 2023; 16(10): 4537-4542.‏ doi: 10.52711/0974-360X.2023.00739
17.    Artiss JD. Zak B. Measurement of cholesterol concentration. In: Rifai N, Warnick GR, Dominiczak MH, eds. Handbook of Lipoprotein Testing. Washington: AACC Press. 1997; 99-114.
18.    Plackett RL. Burman JP. The design of optimum multifactorial experiments. Biometrika. 1946; 33: 305–325. https://doi.org/10.2307/2332195
19.    El-Ghwas DE. Mazeed TE. El-Waseif AA. Al-Zahrani HA. Almaghrabi OA. Elazzazy AM. Factorial experimental design for optimization of zinc oxide nanoparticles production. Current Nanoscience. 2020; 16(1): 51-61.‏ https://doi.org/10.2174/1573413715666190618103127
20.    Qadah AM. El-Waseif AA. Yehia H. Novel use of probiotic as acetylcholine esterase inhibitor and a new strategy for activity optimization as a biotherapeutic agent. Journal of Applied Biology and Biotechnology. 2023; 11(3): 202-215.‏ doi: 10.7324/JABB.2023.141954
21.    Maany D. El-Waseif AA. Abd-Elwahed E. Optimization of Enterocin Production from Probiotic Enterococcus faecium Using Taguchi Experimental Design. Turkish Journal of Pharmaceutical Sciences. 2024; 21(3): 192. doi: 10.4274/tjps.galenos.2023.83451
22.    El-Ghwas DE. El-Waseif AA. Multifactorial Optimization and Characterization of Bacterial Cellulose by Plackett-Burman and Taguchi Designs. Research Journal of Pharmacy and Technology. 2024; 17(12): 6050-6062. doi: 10.52711/0974-360X.2024.00918
23.    El-Waseif AA. Abd-El Razik M. Abobaker RA. Emam FM. Hassan MG. Optimization of Prebiotic Exopolysaccharide production from Probiotic Lactobacillus brevis using Taguchi Experimental Design. Research Journal of Pharmacy and Technology. 2024; 17(12): 5803-5808. doi: 10.52711/0974-360X.2024.00918
24.    Dashkevicz MP. Feighner SD. Development of a differential medium for bile salt hydrolase-active Lactobacillus spp. Applied and Environmental Microbiology. 1989; 55(1): 11-16. doi: 10.52711/0974-360X.2024.00918
25.    Ahn YT. Kim GB. Lim KS. Baek YJ. Kim HU. Deconjugation of bile salts by Lactobacillus acidophilus isolates. International Dairy Journal. 2003; 13(4): 303-311. https://doi.org/10.1016/S0958-6946(02)00174-7
26.    Tanaka H. Doesburg K. Iwasaki T. Mierau I. Screening of lactic acid bacteria for bile salt hydrolase activity. Journal of dairy science. 1999; 82(12): 2530-2535. https://doi.org/10.3168/jds.S0022-0302(99)75506-2
27.    Hassanein WA. Awny NM. Ibraheim SM. Cholesterol reduction by Lactococcus lactis KF147. Afr. J. Microbiol. Res. 2013; 7(34): 4338-4349. doi: 10.5897/AJMR12.610
28.    Lye HS. Rahmat-Ali GR. Liong MT. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. International Dairy Journal. 2010; 20(3): 169-175. https://doi.org/10.1016/j.idairyj.2009.10.003
29.    Sivarao S. An T. Ammar A. DOE based statistical approaches in modeling of laser processing-review and suggestion, Int. J. Eng. Technol. 2010; 10: 1–8.
30.    El-Waseif AA. Gaber HS. Ewais EA. Hypocholesterolemic Operating Parameters of Novel Probiotics In vitro. Research Journal of Pharmacy and Technology. 2021; 14(10): 5197-5201.‏ doi:10.52711/0974-360X.2021.00904
31.    El-Waseif AA. Roshdy TY. Abdel-Monem MO. Hassan MG. Taguchi design Analysis for optimization of probiotics cholesterol assimilation. Materials Today: Proceedings. 2022; 61(3): 1154-1157. https://doi.org/10.1016/j.matpr.2021.12.137
32.    Lafy AS. Alash SA. Screening test of bile salt hydrolase activity produced by Lactobacillus spp. by qualitative and quantitative methods. Curr Res Microbiol Biotechnol. 2018; 6: 1567-1571. http://crmb.aizeonpublishers.net/content/2018/2/crmb1567-1571.pdf
33.    Suvarna VC. Boby VU. Probiotics in human health: A current assessment. Current Science. 2005; 88(11): 1744-1748. https://www.jstor.org/stable/24110346
34.    Begley M. Hill C. Gahan CG. Bile salt hydrolase activity in probiotics. Applied and environmental microbiology. 2006; 72(3): 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
35.    Corzo G. Gilliland SE. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. Journal of Dairy Science. 1999; 82(3): 472-480. https://doi.org/10.3168/jds.S0022-0302(99)75256-2
36.    De Smet I. Van Hoorde L. Vande Woestyne M. Christiaens H. Verstraete W. Significance of bile salt hydrolytic activities of lactobacilli. Journal of Applied Microbiology. 1995; 79(3): 292-301. https://doi.org/10.1111/j.1365-2672.1995.tb03140.x 
37.    Kimoto-Nira H. Mizumachi K. Nomura M. Kobayashi M. Fujita Y. Okamoto T. Suzuki I. Tsuji NM. Kurisaki JI. Ohmomo S. Lactococcus sp. as potential probiotic lactic acid bacteria. Japan Agricultural Research Quarterly. 2007; 41(3): 181-189. doi: http://dx.doi.org/10.20884/1.jm.2017.12.2.364
38.    Fan X. Ling N. Liu C. Liu M. Xu J. Zhang T. Pan D. Screening of an efficient cholesterol-lowering strain of Lactiplantibacillus plantarum and investigation of its degradation molecular mechanism. Ultrasonics Sonochemistry. 2023; 101: 54–1. https://doi.org/10.1016/j.ultsonch.2023.106698
39.    Elhalabi HM. El-Waseif AA. El-Ghwas DE. Assessment of Anti-inflammatory, Antimicrobial and Cytotoxicity of Chitosan-Moringa Composite and Calcium Hydroxide Nanoparticles as an intra-canal medicament in vitro. Research Journal of Pharmacy and Technology. 2024; 17(2): 776-788. doi : 10.52711/0974-360X.2024.00121
40.    El-Waseif AA, Awad GS. El Maaty SA. Hassan MG. Molecular characterization of Virulence genes Shiga-like, Heat-labile Toxins and Antibiotics resistance in multidrug-resistant Escherichia coli. Research Journal of Pharmacy and Technology. 2022; 15(7): 2957-2961.‏ doi: 10.52711/0974-360X.2022.00493
41.    El-Waseif AA. El-Ghani GA. Maaty SA. Hassan MG. Cytotoxicity and promising anti-biofilm of Curcuma silver nanoparticles against Candida albicans. Research Journal of Pharmacy and Technology. 2022; 15(8): 3355-3359.‏ doi: 10.52711/0974-360X.2022.00561
42.    Lela AM. El-Sehrawy MH. Abdel-Rahman MA. El-Waseif AA. Efficiency Evaluation and Characterization of Microbially, Phyto and Chemically Synthesized Silver Nanoparticles. Research Journal of Pharmacy and Technology. 2024; 17(2): 717-722. doi: 10.52711/0974-360X.2024.00111

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available