Author(s): Khasan Y. Kayumov, Lubov S. Kuchkarova, Jakhongir S. Abdurakhmonov, Rashidbek Kh. Achilov, Shoaib Khan, Teodoro Durá-Travé, Manzura A. Agzamova, Komila A. Eshbakova, Shohista O. Meliyeva, Nedim Özdemir, Anum Masood

Email(s): qayumovhasan642@gmail.com

DOI: 10.52711/0974-360X.2026.00002   

Address: Khasan Y. Kayumov1*, Lubov S. Kuchkarova1, Jakhongir S. Abdurakhmonov1, Rashidbek Kh. Achilov1, Shoaib Khan2, Teodoro Durá-Travé3, Manzura A. Agzamova4, Komila A. Eshbakova4, Shohista O. Meliyeva4, Nedim Özdemir5, Anum Masood6
1National University of Uzbekistan named after Mirza Ulugbek, Tashkent, Uzbekistan.
2Department of Chemistry, Abbottabad University of Science and Technology, Abbottabad - 22500, Pakistan.
3Faculty of Medicine, University of Navarra, Spain.
4Institute of Chemistry of Plant Substans of the Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan.
5Mugla Sıtkı Kocman University, Turkey.
6Department of Pharmaceutical Chemistry, The Islamia University of Bahawalpur Pakistan, Bahawalpur, Pakistan.
*Corresponding Author

Published In:   Volume - 19,      Issue - 1,     Year - 2026


ABSTRACT:
Background: Flavonoids have been extensively researched for their ability to modulate enzyme activity, particularly in relation to controlling blood sugar and carbohydrates metabolism. However, there is limited information on the tissue-specific effects of structurally diverse flavonoids on a-amylase activity. This study aimed to investigate and compare rutin, quercetin, luteolin, chrysosplenetin, and thamiflaside affects on a-amylase activity in various parts of the digestive system. Methods: We used homogenates from pancreatic tissue, parotid gland, intestinal mucosa, and chyme during in vitro assays. Flavonoids were tested at different levels and a-amylase activity was measured using a spectrophotometer. The Student-Fisher t-test was used to run a statistical analysis to determine dose and tissue-dependent effects. Results: Rutin, quercetin, luteolin, and chrysosplenetin significantly and dose-dependently inhibited the a-amylase activity. The parotid gland and intestinal mucosa were more sensitive (p<0.05). Luteolin had the strongest inhibitory impact, perhaps because of its hydroxylation patterns. On the other hand, thamiflaside had a distinct influence on a-amylase activity, particularly in the salivary and intestinal compartments suggesting allosteric activation pathways. The varied modulatory profiles were correlated with flavonoid structure-function relationships, where the distribution of hydroxyl and methoxyl groups determines the enzyme binding and outcomes. Conclusion: The results showed that some flavonoids might be used as natural a-amylase inhibitors to regulate blood sugar levels and treat metabolic disorders. They also showed that thamiflaside could help those who need better carbohydrate digestion. These findings revealed that flavonoids might be added to nutraceutical formulations in an organized way. Furthermore, in vivo and clinical studies are needed to determine their safety and efficacy as therapeutic agents.


Cite this article:
Khasan Y. Kayumov, Lubov S. Kuchkarova, Jakhongir S. Abdurakhmonov, Rashidbek Kh. Achilov, Shoaib Khan, Teodoro Durá-Travé, Manzura A. Agzamova, Komila A. Eshbakova, Shohista O. Meliyeva, Nedim Özdemir, Anum Masood. Impact of select Polyphenols on α-amylase Activity under In vitro Conditions. Research Journal of Pharmacy and Technology. 2026;19(1):7-8. doi: 10.52711/0974-360X.2026.00002

Cite(Electronic):
Khasan Y. Kayumov, Lubov S. Kuchkarova, Jakhongir S. Abdurakhmonov, Rashidbek Kh. Achilov, Shoaib Khan, Teodoro Durá-Travé, Manzura A. Agzamova, Komila A. Eshbakova, Shohista O. Meliyeva, Nedim Özdemir, Anum Masood. Impact of select Polyphenols on α-amylase Activity under In vitro Conditions. Research Journal of Pharmacy and Technology. 2026;19(1):7-8. doi: 10.52711/0974-360X.2026.00002   Available on: https://rjptonline.org/AbstractView.aspx?PID=2026-19-1-2


REFERENCES:
1.    Lebelo K. Malebo N. Mochane MJ. Masinde M. Chemical Contamination Pathways and the Food Safety Implications along the Various Stages of Food Production: A Review. Int. J. Environ. Res. Public Health 2021; 18: 5795. doi.org/10.3390/ijerph18115795
2.    Kashtoh H. Baek KH. New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects. Plants (Basel). 2023; Aug 14; 12(16): 2944. doi: 10.3390/plants12162944. 
3.    Henrissat B. A Classification of Glycosyl Hydrolases Based on Amino Acid Sequence Similarities. Biochem. J. 1991; 280 (2), 309– 316,  doi: 10.1042/bj2800309
4.    Hall FF. Ratliff CR. Hayakawa T. Culp TW. Hightower NC. Substrate Differentiation of Human Pancreatic and Salivary Alpha-Amylases. Dig. Dis. Sci. 1970; 15(11): 1031–1038,  doi: 10.1007/BF02232822
5.    Janeček Š. Svensson B. MacGregor EA. α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell Mol Life Sci. 2014; Apr; 71(7): 1149-70. doi: 10.1007/s00018-013-1388-z. 
6.    Abdulkareem MA. Owolabi BA. Saheed ES. et al. Genetic factors and the role of pancreatic amylase in the pathogenesis of type 2 diabetes. Egypt J Med Hum Genet. 2024; 25(33): doi.org/10.1186/s43042-024-00505-6
7.    De Souza PM. de Oliveira MP. Application of microbial α-amylase in industry - A review // Braz J Microbiol. – 2010; 41(4): 850-61. doi: 10.1590/S1517-83822010000400004
8.    Yadav R. Bhartiya JP. Verma SK. Nandkeoliar MK. The evaluation of serum amylase in the patients of type 2 diabetes mellitus, with a possible correlation with the pancreatic functions. J Clin Diagn Res. 2013; Jul; 7(7): 1291-4. doi: 10.7860/JCDR/2013/6016.3120.
9.    Abdulkareem MA. Owolabi BA. Saheed ES. et al. Genetic factors and the role of pancreatic amylase in the pathogenesis of type 2 diabetes. Egypt J Med Hum Genet 25, 33 (2024). https://doi.org/10.1186/s43042-024-00505-6
10.    Rani K., Rana R., Datt S. Review on characteristics andapplication of amylases.  Int. J. Microbial. and Bioinform. 2015; 5(1): 1-5.
11.    Harborne J.B. Nature, distribution and function of plant flavonoids. Prog. Clin. Biol. Res. 1986; 213: 15–24
12.    Ganeshpurkar A, Saluja AK. The Pharmacological Potential of Rutin. Saudi Pharm J. 2017; Feb; 25(2): 149-164. doi: 10.1016/j.jsps.2016.04.025. Epub 2016 Apr 30. PMID: 28344465; PMCID: PMC5355559.
13.    Kim, D.S.; Lim, S.B. Subcritical water extraction of rutin from the aerial parts of common buckwheat. J. Supercrit. Fluids 2019, 152, 104561.
14.    Liao, J.; Qu, B.; Liu, D.; Zheng, N. New method to enhance the extraction yield of rutin from Sophora japonica using a novel ultrasonic extraction system by determining optimum ultrasonic frequency. Ultrason. Sonochemistry. 2015; 27: 110–116.
15.    Moreira, G.C.; Dias, F.D.S. Mixture design and Doehlert matrix for optimization of the ultrasonic assisted extraction of caffeic acid, rutin, catechin and trans-cinnamic acid in Physalis angulata L. and determination by HPLC DAD. Microchem. J. 2018; 141: 247–252.
16.    Habtemariam, S.; Varghese, G.K. Extractability of Rutin in Herbal Tea Preparations of Moringa stenopetala Leaves. Beverages. 2015; 1: 169–182.
17.    Liu A, Lu X, Ji Z, Dong L, Jiang J, Tian J, Wen H, Xu Z, Xu G, Jiang M. Preliminary Study to Assess the Impact of Dietary Rutin on Growth, Antioxidant Capacity, and Intestinal Health of Yellow Catfish, Pelteobagrus fulvidraco. Animals (Basel). 2023; Oct 31; 13(21): 3386. doi: 10.3390/ani13213386. PMID: 37958140; PMCID: PMC10650330.
18.    Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother. 2017; 96; 305–312.
19.    Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2016; 25; 149–164
20.    Javed H., Khan M.M., Ahmad A., Vaibhav K., Ahmad M.E., Khan A., Ashafaq M., Islam F., Siddiqui M.S., Safhi M.M., Islam F. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience. 2012; 17: 340–352. doi: 10.1016/j.neuroscience.2012.02.046.
21.    Richetti S.K., Blank M., Capiotti K.M., Piato A.L., Bogo M.R., Vianna M.R., Bonan C.D. Quercetin and rutin prevent scopolamine-induced memory impairment in zebrafish. Behav. Brain Res. 2011; 217: 10–15. doi: 10.1016/j.bbr.2010.09.027.
22.    Mellou F., Loutrari H., Stamatis H., Roussos C., Kolisis F.N. Enzymatic esterification of flavonoids with unsaturated fatty acids: effect of the novel esters on vascular endothelial growth factor release from K562 cells. Process Biochem. 2006; 41: 2029–3204.
23.    Ben Sghaier M., Pagano A., Mousslim M., Ammari Y., Kovacic H., Luis J. Rutin inhibits proliferation, attenuates superoxide production and decreases adhesion and migration of human cancerous cells. Biomed. Pharmacother. 2016; 84: 1972–1978. doi: 10.1016/j.biopha.2016.11.001.
24.    Mutha R.E., Tatiya A.U., Surana S.J. Flavonoids as natural phenolic compounds and their role in therapeutics: An overview. Futur. J. Pharm. Sci. 2021; 7: 25. doi: 10.1186/s43094-020-00161-8.
25.    Roy A., Khan A., Ahmad I., Alghamdi S., Rajab B.S., Babalghith A.O., Alshahrani M.Y., Islam S., Islam M.R. Flavonoids a Bioactive Compound from Medicinal Plants and Its Therapeutic Applications. Biomed Res. Int. 2022; 2022: 5445291. doi: 10.1155/2022/5445291.
26.    Liu, C.; Cheng, X.; Wu, Y.; Xu, W.; Xia, H.; Jia, R.; Liu, Y.; Shen, S.; Xu, Y.; Cheng, Z. Antioxidant Activity of Quercetin-Containing Liposomes-in-Gel and Its Effect on Prevention and Treatment of Cutaneous Eczema. Pharmaceuticals 2023; 16: 1184. https://doi.org/10.3390/ph16081184
27.    Tronina, T.; Łużny, M.; Dymarska, M.; Urbaniak, M.; Kozłowska, E.; Piegza, M.; Stępień, Ł.; Janeczko, T. Glycosylation of Quercetin by Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products’ Bioactivity. Int. J. Mol. Sci. 2023, 24, 11857.
28.    LS Kuchkarova, KY Kayumov, NA Ergashev and GT Kudeshovа Effect of Quercetin on the Intestinal Carbohydrases Activity in the Offspring of the Lead Intoxicated Mother, India. Journal of Natural Remedies 2024; 24(2) 391-396 doi: 10.18311/jnr/2024/32682
29.    Rajesh, R.U.; Dhanaraj, S. A critical review on quercetin bioflavonoid and its derivatives: Scope, synthesis, and biological applications with future prospects. Arab. J. Chem. 2023, 16, 104881.
30.    Kooshki, L.; Zarneshan, S.N.; Fakhri, S.; Moradi, S.Z.; Echeverria, J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. Phytomedicine 2023, 112, 154686.
31.    George, J.; Edwards, D.; Pun, S.; Williams, D. Evaluation of Antioxidant Capacity (ABTS and CUPRAC) and Total Phenolic Content (Folin-Ciocalteu) Assays of Selected Fruit, Vegetables, and Spices. Int. J. Food Sci. 2022, 2022, 2581470.
32.    Chen Y.Q., Chen H.Y., Tang Q.Q., Li Y.F., Liu X.S., Lu F.H., Gu Y.Y. Protective effect of quercetin on kidney diseases: From chemistry to herbal medicines. Front. Pharmacol. 2022; 13: 968226. doi: 10.3389/fphar.2022.968226.
33.    B.A.Komilov, M. А.Agzamova, I.M.Isaev, K.A.Eshbakova. A novel flavonol glycoside from the Thalictrum minus.  V.56 (5). P.814-816. (2020). DOI: 10.1007/s10600-020-03159-z
34.    N Aziz, MY Kim, and JY Cho. Anti-inflammatory effects of luteolin: a review of in vitro, in vivo, and in silico studies, Ireland. Journal of Ethnopharmacology. 2018; 225, 342–358, doi.org/10.1016/j.jep.2018.05.019, 2-s2.0-85047256115, 29801717.
35.    Jialian Lv, Xinyue Song, Zixin Luo Duoqin Huang, Li Xiao, Kang Zou Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases Front. Pharmacol., 12 February 2025 Sec. Ethnopharmacology  Volume 16 - 2025 | https://doi.org/10.3389/fphar.2025.1535555
36.    Lv J, Song X, Luo Z, Huang D, Xiao L, Zou K. Luteolin: exploring its therapeutic potential and molecular mechanisms in pulmonary diseases. Front Pharmacol. 2025; Feb 12;16:1535555. doi: 10.3389/fphar.2025.1535555.
37.    Jiang J, Zhu F, Zhang H, Sun T, Fu F, Chen X, Zhang Y. Luteolin suppresses the growth of colon cancer cells by inhibiting the IL-6/STAT3 signaling pathway. J Gastrointest Oncol. 2022; Aug; 13(4): 1722-1732. doi: 10.21037/jgo-22-507.
38.    Fernando, P., Ko, D., Piao, M., Kang, K., Herath, H., & Hyun, J. (2024). Protective effect of luteolin against oxidative stress‑mediated cell injury via enhancing antioxidant systems. Molecular Medicine Reports, 30, 121. https://doi.org/10.3892/mmr.2024.13244
39.    Zhang J, Li C, Li W, Shi Z, Liu Z, Zhou J, Tang J, Ren Z, Qiao Y, Liu D. Mechanism of luteolin against non-small-cell lung cancer: a study based on network pharmacology, molecular docking, molecular dynamics simulation, and in vitro experiments. Front Oncol. 2024; Nov 8; 14: 1471109. doi: 10.3389/fonc.2024.1471109.
40.    Ding Y, Shi X, Shuai X, et al. Luteolin prevents uric acid-induced pancreatic β-cell dysfunction. Journal of Biomedical Research. 2014; Jul; 28(4): 292-298. DOI: 10.7555/jbr.28.20130170.
41.    Han M, Lu Y, Tao Y, Zhang X, Dai C, Zhang B, Xu H, Li J. Luteolin Protects Pancreatic β Cells against Apoptosis through Regulation of Autophagy and ROS Clearance. Pharmaceuticals. 2023; 16(7): 975. https://doi.org/10.3390/ph16070975
42.    Li L, Luo W, Qian Y, Zhu W, Qian J, Li J, Jin Y, Xu X, Liang G. Luteolin protects against diabetic cardiomyopathy by inhibiting NF-κB-mediated inflammation and activating the Nrf2-mediated antioxidant responses. Phytomedicine. 2019; Jun; 59:152774. doi: 10.1016/j.phymed.2018.11.034.
43.    Xiong J, Wang K, Yuan C, Xing R, Ni J, Hu G, Chen F, Wang X. Luteolin protects mice from severe acute pancreatitis by exerting HO-1-mediated anti-inflammatory and antioxidant effects. Int J Mol Med. 2017; Jan; 39(1): 113-125. doi: 10.3892/ijmm.2016.2809.
44.    Dinesh Kumar Patel, Biological potential and therapeutic benefit of Chrysosplenetin: An Applications of polymethoxylated flavonoid in medicine from natural sources, Pharmacological Research - Modern Chinese Medicine, Volume 4, 2022, https://doi.org/10.1016/j.prmcm.2022.100155.
45.    Ma L, Wei S, Yang B, Ma W, Wu X, Ji H, et al. Chrysosplenetin inhibits artemisinin efflux in P-gp-over-expressing Caco-2 cells and reverses P-gp/MDR1 mRNA up-regulated expression induced by artemisinin in mouse small intestine. Pharm Biol. 2017; 55(1): 374–80.
46.    Xu J, Ji H, Yao Y, Liu X, Huang Y, Zhang Y, Tang Y, Chen J. Spatial regulation of chrysosplenetin on amino acid homeostasis linked to artemisinin resistance in Plasmodium berghei K173 based on targeted metabolomics. Sci Rep. 2025; Apr 21; 15(1): 13701. doi: 10.1038/s41598-025-98409-x.
47.    Hong, G., He, X., Shen, Y. et al. Chrysosplenetin promotes osteoblastogenesis of bone marrow stromal cells via Wnt/β-catenin pathway and enhances osteogenesis in estrogen deficiency-induced bone loss. Stem Cell Res Ther 10, 277 (2019). https://doi.org/10.1186/s13287-019-1375-x
48.    Hong, G., Zhou, L., He, W., Wei, Q., & Xu, J. (2024). The Effects and Mechanisms of Chrysosplenetin in Targeting RANKL‐Induced NF‐κB Signaling and NFATc1 Activation to Protect Bone Density in Osteolytic Diseases. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.30670
49.    Zhu QC, Wang Y, Liu YP, Zhang RQ, Li X, Su WH, et al. Inhibition of enterovirus 71 replication by chrysosplenetin and penduletin. Eur J Pharm Sci. 2011; 44(3): 392–8.
50.    He G, Feng Y, Chen T, Zhang Y, Liang L, Yan J, Song Y, Chen F, Liu W. Chrysosplenetin B suppresses the growth of human prostate cancer cells by inducing G1 cell cycle arrest. Bioimpacts. 2025; Mar 2; 15: 30688. doi: 10.34172/bi.30688.



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.52711/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available