Author(s):
Megha Tonk, Surya Goel, Anshul Gupta, Amrish Chandra
Email(s):
meghafrnds@gmail.com
DOI:
10.52711/0974-360X.2025.00659
Address:
Megha Tonk1*, Surya Goel1, Anshul Gupta2, Amrish Chandra3
1Raj Kumar Goel Institute of Technology (Pharmacy), 5-KM. Stone, Delhi-Meerut Road, Ghaziabad, Uttar Pradesh, India.
2Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India.
3School of Pharmacy, Sharda University, Greater Noida, Uttar Pradesh 201310 (U.P.)
*Corresponding Author
Published In:
Volume - 18,
Issue - 9,
Year - 2025
ABSTRACT:
In light of the challenges of creating novel drug molecules, more focus is being placed on developing innovative methods for delivering pre-existing drugs. Due to significant batch-to-batch variability, the production of nanoparticle-based drug delivery systems is still in its infancy. This is impeding industrial-scale clinical translation even though several techniques have been discovered. Thus, it is not surprising to see this technique advance slowly, this is not the case when it comes to the controlled-release drug delivery mechanism. The principal aims of this study are to investigate recent advancements in formulation techniques, deliberate on tactics to improve controlled drug administration, and underscore the possibilities of these systems for targeted drug delivery. This manuscript discusses controlled drug delivery systems, focusing on preparation approaches, recent advancements, patents, marketed preparations, challenges, and future perspectives.
Cite this article:
Megha Tonk, Surya Goel, Anshul Gupta, Amrish Chandra. Recent Advances in Controlled Drug Delivery Systems: Patent, Future Prospects and Challenges. Research Journal of Pharmacy and Technology. 2025;18(9):4589-6. doi: 10.52711/0974-360X.2025.00659
Cite(Electronic):
Megha Tonk, Surya Goel, Anshul Gupta, Amrish Chandra. Recent Advances in Controlled Drug Delivery Systems: Patent, Future Prospects and Challenges. Research Journal of Pharmacy and Technology. 2025;18(9):4589-6. doi: 10.52711/0974-360X.2025.00659 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-9-79
10. REFERENCES:
1. Malafaya PB. Silva GA. Reis RL. Drug Delivery Therapies I-General Trends and Its Importance on Bone Tissue Engineering Applications., Current Opinion in Solid State and Materials Science. 2002; 6(4): 285-293. https://doi.org/10.1016/S1359-0286(02)00075-X.
2. Nayak AK. Ahmad SA. Beg S. Ara TJ. Hasnain MS. 12 - Drug Delivery: Present, Past, and Future of Medicine. In Applications of Nanocomposite Materials in Drug Delivery, edited by Inamuddin, Asiri AM. Mohammad A. Eds.; Woodhead Publishing Series in Biomaterials. 2018; 255–282. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813741-3.00012-1.
3. Alvarez-Lorenzo C. Concheiro A. Smart Drug Delivery Systems: From Fundamentals to the Clinic. Chem. Commun. 2014; 50 (58): 7743–7765. https://doi.org/10.1039/C4CC01429D.
4. Stewart SA. Domínguez-Robles J. Donnelly RF. Larrañeta E. Implantable polymeric drug delivery devices: classification, manufacture, materials, and clinical applications. Polymers. 2018; 10(12): 1379.
5. Ketabat F. Pundir M. Mohabatpour F. Lobanova L. Koutsopoulos S. Hadjiiski L. et al. Controlled drug delivery systems for oral cancer treatment—current status and future perspectives. Pharmaceutics. 2019; 11(7): 302.
6. Liu D. Yang F. Xiong F. Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016; 6(9): 1306.
7. de Oliveira Freitas LB. de Melo Corgosinho L. Faria JA. dos Santos VM. Resende JM. Leal AS et al. Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous and Mesoporous Materials. 2017; 271-83.
8. Spiridonova TI. Tverdokhlebov SI. Anissimov YG. Investigation of the size distribution for diffusion-controlled drug release from drug delivery systems of various geometries. Journal of Pharmaceutical Sciences. 2019; 108(8): 2690-7.
9. Wang Y. Newman MR. Benoit DS. Development of controlled drug delivery systems for bone fracture-targeted therapeutic delivery: A review. European Journal of Pharmaceutics and Biopharmaceutics. 2018; 127: 223-36.
10. Alaithan S. Naveen NR. Goudanavar PS. Bhavani PD. Ramesh B. Koppuravuri NP et al. Development of novel unfolding film system of Itopride hydrochloride using box-Behnken design—A gastro retentive approach. Pharmaceuticals. 2022; 15(8): 981.
11. Mabrouk M. Beherei HH. ElShebiney S. Tanaka M. Newly developed controlled release subcutaneous formulation for tramadol hydrochloride. Saudi Pharmaceutical Journal. 2018; 26(4): 585-92.
12. Li L. Lee C. Cruz DF. Krovi SA. Hudgens MG. Cottrell ML et al. Reservoir-style polymeric drug delivery systems: Empirical and predictive models for implant design. Pharmaceuticals. 2022; 15(10): 1226.
13. Zhong H. Chan G. Hu Y. Hu H. Ouyang D. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics 2018; 10(4): 263.
14. Bassyouni F. ElHalwany N. Abdel Rehim M. Neyfeh M. Advances and new technologies applied in controlled drug delivery system. Research on Chemical Intermediates. 2015; 41: 2165-200.
15. Awad A. Trenfield SJ. Basit AW. Solid oral dosage forms. InRemington 2021 Jan 1 (pp. 333-358). Academic Press. https://doi.org/10.1016/B978-0-12-820007-0.00019-2.
16. Friuli V. Pisani S. Conti B. Bruni G. Maggi L. Tablet formulations of polymeric electrospun fibers for the controlled release of drugs with pH-dependent solubility. Polymers. 2022; 14(10): 2127.
17. Wheless JW. Phelps SJ. A clinician's guide to oral extended-release drug delivery systems in epilepsy. The Journal of Pediatric Pharmacology and Therapeutics. 2018; 23(4): 277-92.
18. Sousa AS. Serra J. Estevens C. Costa R. Ribeiro AJ. A quality by design approach in oral extended release drug delivery systems: where we are and where we are going?. Journal of Pharmaceutical Investigation. 2023; 53(2): 269-306.
19. Adepu S. Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021; 26(19): 5905.
20. Gouda R. Baishya H,.Qing Z. Application of mathematical models in drug release kinetics of carbidopa and levodopa ER tablets. J. Dev. Drugs. 2017; 6(02): 1-8.
21. Wang YS. Dai JG. X-ray computed tomography for pore-related characterization and simulation of cement mortar matrix. Ndt and E International. 2017; 86: 28-35.
22. Subramani M. Vekatashwaramurthy N. Sambathkumar R. A Novel Approach on Role of Polymers Used in Sustained Re-lease Drug Delivery System—A Review. Saudi J. Med. Pharm. Sci. 2021; 7: 170-8.
23. Almoshari Y. Osmotic pump drug delivery systems—a comprehensive review. Pharmaceuticals. 2022; 15(11): 1430.
24. Gomaa E. El Deeb S. Ibrahim AE. Faisal MM. Bimodal Release Two-In-One Clonazepam Matrix Lozenge Tablets for Managing Anxiety-Related Disorders: Formulation, Optimization and In Vivo Evaluation. Scientia Pharmaceutica. 2022; 90(3): 43.
25. Kuksal A. Tiwary AK. Jain NK. Jain S. Formulation and in vitro, in vivo evaluation of extended-release matrix tablet of zidovudine: influence of combination of hydrophilic and hydrophobic matrix formers. AAPS Pharmscitech. 2006; 7: E1-9.
26. Qureshi D. Nayak AK. Kim D. Maji S. Anis A. Mohanty B. Pal K. Polysaccharide-based polymeric gels as drug delivery vehicles. InAdvances and Challenges in Pharmaceutical Technology. 2021; 283-325. Academic Press.
27. Bhatt P. Patel D. Patel A. Patel A. Nagarsheth A. Oral Controlled Release Systems: Current Strategies and Challenges. Novel Drug Delivery Technologies: Innovative Strategies for Drug Re-positioning. 2019:73-120.
28. Maurya R. Sharma PK. Malviya R. A review on controlled drug release formulation: Spansules. Int. J. Pharm. Sci. Res. 2014; 5: 78-81.
29. Bermejo M. Sanchez-Dengra B. Gonzalez-Alvarez M. Gonzalez-Alvarez I. Oral controlled release dosage forms: dissolution versus diffusion. Expert Opinion on Drug Delivery. 2020; 17(6): 791-803.
30. Sakr W. Alanazi F. Sakr A. Effect of Kollidon® SR on the release of Albuterol Sulphate from matrix tablets. Saudi Pharmaceutical Journal. 2011; 19(1): 19-27.
31. Missaghi S. Patel P. Farrell TP. Huatan H. Rajabi-Siahboomi AR. Investigation of critical core formulation and process parameters for osmotic pump oral drug delivery. AAPS PharmSciTech. 2014; 15(1): 149-60.
32. Saleem MT. Shoaib MH. Yousuf RI. Ahmed FR. Ahmed K. Siddiqui F et al. SeDeM tool-driven full factorial design for osmotic drug delivery of tramadol HCl: Formulation development, physicochemical evaluation, and in-silico PBPK modeling for predictive pharmacokinetic evaluation using GastroPlus™. Frontiers in Pharmacology. 2022; 13: 974715.
33. Almoshari Y. Osmotic pump drug delivery systems—a comprehensive review. Pharmaceuticals. 2022; 15(11): 1430.
34. Oledzka E. Sobczak M. Nalecz-Jawecki G. Skrzypczak A. Kolodziejski W. Ampicillin-ester bonded branched polymers: characterization, cyto-, genotoxicity and controlled drug-release behaviour. Molecules. 2014; 19(6): 7543-56.
35. Bajpai AK. Shukla SK. Bhanu S. Kankane S. Responsive polymers in controlled drug delivery. Progress in Polymer Science. 2008; 33(11): 1088-118.
36. Ojha S. Sharma S and Mishra S. Hydrogels as Potential Controlled Drug Delivery System: Drug Release Mechanism and Applications. Nanoscience and Nanotechnology-Asia. 2023; 13(3): 42-50.
37. Shah SA. Sohail M. Minhas MU. Khan S. Hussain Z. Mudassir et al. pH-responsive CAP-co-poly (methacrylic acid)-based hydrogel as an efficient platform for controlled gastrointestinal delivery: fabrication, characterization, in vitro and in vivo toxicity evaluation. Drug Delivery and Translational Research. 2019; 9: 555-77.
38. Senapati S. Mahanta AK. Kumar S. Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy. 2018; 3(1): 7.
39. Cascone S. Lamberti G. Hydrogel-based commercial products for biomedical applications: A review. International Journal of Pharmaceutics. 2020; 573: 118803.
40. Suhail M. Hung MC. Chiu IH. Vu QL. Wu PC. Preparation and in-vitro characterization of 5-aminosalicylic acid loaded hydrogels for colon specific delivery. Journal of Materials Research and Technology. 2022; 21: 339-52.
41. Anand V. Kandarapu R. Garg S. Ion-exchange resins: carrying drug delivery forward. Drug Discovery Today. 2001; 6(17): 905-14.
42. Guo X. Chang RK. Hussain MA. Ion-exchange resins as drug delivery carriers. Journal of Pharmaceutical Sciences. 2009; 98(11): 3886-902..
43. Srikanth MV. Sunil SA. Rao NS. Uhumwangho MU. Murthy KR. Ion-exchange resins as controlled drug delivery carriers. Journal of Scientific Research. 2010; 2(3): 597.
44. Tonk M. Ain S. Kumar B. Ain Q. Study the effect of polymers on the release rate of propranolol hydrochloride from controlled release matrix tablets. Ann. Phytomed. 2023; 12(1): 1-8.
45. Vasconcelos MO. Silva LA. Sousa-Junior AA. dos Santos TR. da Silva CA. Valadares MC. Lidocaine-and chloramphenicol-loaded nanoparticles embedded in a chitosan/hyaluronic acid/glycerol matrix: Drug-eluting biomembranes with potential for guided tissue regeneration. Frontiers in Nanotechnology. 2022; 4: 1049599.
46. Thamvasupong P. Viravaidya-Pasuwat K. Controlled Release Mechanism of Vancomycin from Double-Layer Poly-L-Lactic Acid-Coated Implants for Prevention of Bacterial Infection. Polymers. 2022; 14(17): 3493.
47. Verma S. Tonk RK. Albratty M. Alhazmi HA. Najmi A. Kumar R et al. Design and evaluation of sustained release mucoadhesive film of sumatriptan succinate containing grafted co-polymer as the platform. Saudi Pharmaceutical Journal. 2022; 30(11): 1527-37.
48. Mehdi-alamdarlou S. Mozafari N. Daneshamooz S. Ashrafi H. Preparation and in vitro evaluation of controlled release granules of mesalazine for colon targeted drug delivery system. Trends in Pharmaceutical Sciences. 2022; 8(1): 37-42.
49. Abbas G. Rasul A. Fakhar-e-Alam M. Saadullah M. Muzammil S. Iqbal O et al. Nanoparticles of thiolated chitosan for controlled delivery of moxifloxacin: In-vitro and in-vivo evaluation. Journal of King Saud University-Science. 2022; 34(7): 102218.
50. Pishnamazi M. Hafizi H. Pishnamazi M. Marjani A. Shirazian S. Walker GM. Controlled release evaluation of paracetamol loaded amine functionalized mesoporous silica KCC1 compared to microcrystalline cellulose based tablets. Scientific Reports. 2021; 11(1): 535.
51. Garudaiahg SV. Response Surface Optimization of Diltiazem HCl Gastric Floating Matrix Tablets. Asian Journal of Pharmaceutics (AJP). 2020; 18; 14(03).
52. Patil R. Jat RK. Formulation and evaluation of matrix tablets containing chitosan based polyelectrolyte complex with natural gum for prolonged release of diltiazem HCl. Journal of Drug Delivery and Therapeutics. 2019; 9(4): 22-31.
53. Nanaki S. Barmpalexis P. Iatrou A. Christodoulou E. Kostoglou M. Bikiaris DN. Risperidone controlled release microspheres based on poly (lactic acid)-poly (propylene adipate) novel polymer blends appropriate for long acting injectable formulations. Pharmaceutics. 2018; 10(3): 130.
54. Das IJ. Formulation Design and Characterization of Lamivudine Controlled Release Matrix Tablets. Asian Journal of Pharmaceutics (AJP). 2017; 11(02).
55. Pawar PK. Gautam C. Design, optimization and evaluation of mesalamine matrix tablet for colon drug delivery system. Journal of Pharmaceutical Investigation. 2016; 46: 67-78.
56. Quillivant XR: Uses, Dosage and Side Effects. Drugs.com. https://www.drugs.com/quillivant-xr.html (accessed 2023-01-10).
57. Das NG. Das SK. Controlled release of oral dosage forms. Pharmaceutical Technology. 2003; 15: 10-7.
58. Cipro XR: Package Insert / Prescribing Information - Drugs.com. https://www.drugs.com/pro/cipro-xr.html (accessed 2023-01-10).
59. FDA Approves Trijardy XR (empagliflozin/linagliptin/metformin) for Type 2 Diabetes in Adults. Drugs.com. https://www.drugs.com/newdrugs/fda-approves-trijardy-xr-empagliflozin-linagliptin-metformin-type-2-diabetes-adults-5149.html (accessed 2023-01-10).
60. U.S. FDA Approves LYRICA® CR (pregabalin) Extended-Release Tablets CV | Pfizer. https://www.pfizer.com/news/press-release/press-release-detail/u_s_fda_approves_lyrica_cr_pregabalin_extended_release_tablets_cv (accessed 2023-01-10).
61. Suffer from Insomnia? Discover AMBIEN CR (zolpidem tartrate extended release). home. https://www.ambien.com/ambien-cr (accessed 2023-01-10).
62. EFFEXOR® XR | Pfizer. https://www.pfizer.com/products/product-detail/effexor_xr (accessed 2023-01-10).
63. Trokendi XR: Side Effects, Dosage and Uses. Drugs.com. https://www.drugs.com/trokendi-xr.html (accessed 2023-01-10).
64. Luvox CR: Indications, Side Effects, Warnings. Drugs.com. https://www.drugs.com/cdi/luvox-cr.html (accessed 2023-01-10).
65. Xanax XR: Indications, Side Effects, Warnings. Drugs.com. https://www.drugs.com/cdi/xanax-xr.html (accessed 2023-01-10).
66. Tummala H. Kesharwani S. inventors; South Dakota Board of Regents, assignee. Site specific curcumin-polymer molecular complexes and methods of treating colon diseases and inflammation. United States patent application US 15/695,757. 2018; 8.
67. Jain S. Dhaliwal S. Rana M. Singh HP. Tiwari AK. Sustained release drug delivery system. US Patent 9,622,977B2. 2017; 18.
68. Robinson MR. Burke JA. Liu H. Orilla WC. Spada LT. Whitcup S. Intraocular sustained release drug delivery systemis and methods fortreating ocular conditions. US 2010/0247606A1. 2010; 30.
69. Arima H. Motoyama K. Kaneko S. Sustained-release carrier, drug using the sustained-release carrier and drug delivery system using the drug. JP2011068606, 2011 April 7.
70. Ashton P. Chen J. Guo H. Polymer-based, sustained release drug delivery system. US20140037746, 2014 Feb. 6.
71. Witham PH. Paul EL. Beach W. Formulations containing omega -3 fatty acids or esters thereof and maqui berry extract and therapeutic uses thereof. US2018/0243253A1, 2018; 30.
72. Shi R. Hughes PM. Schiffman RM. Ketorolac containing sustained release drug delivery system. WO/2014/066658 A1, 2014; 1.
73. Wu CW. Robinson MR. Burke JA. Hughes PM. Bodegradable drug delvery systemis for the sustaned release of proteins. US2014/0086974A1, 2014. 27.
74. Yun YH. Lee BK. Park K. Controlled Drug Delivery: Historical perspective for the next generation. Journal of Controlled Release. 2015; 219: 2-7.
75. Tiwari G. Tiwari R. Sriwastawa B. Bhati L. Pandey S. Pandey P et al. Drug delivery systems: An updated review. International journal of pharmaceutical investigation. 2012; 2(1): 2.
76. Kaur G. Grewal J. Jyoti K. Jain UK. Chandra R. Madan J. Oral controlled and sustained drug delivery systems: Concepts, advances, preclinical, and clinical status. InDrug targeting and stimuli sensitive drug delivery Systems 2018; 567-626. William Andrew Publishing.
77. Puhl DL. D’Amato AR. Gilbert RJ. Challenges of gene delivery to the central nervous system and the growing use of biomaterial vectors. Brain research bulletin. 2019; 150: 216-30.
78. Zhang M. Guo X. Wang M. Liu K. Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. Journal of Controlled Release. 2020; 323: 203-24.
79. Huang Y. Yu Q. Chen Z. Wu W. Zhu Q. Lu Y. In vitro and in vivo correlation for lipid-based formulations: Current status and future perspectives. Acta Pharmaceutica Sinica B. 2021; 11(8): 2469-87.
80. Wen H. Park K. editors. Oral controlled release formulation design and drug delivery: theory to practice. John Wiley and Sons; 2011; Jan 14.
81. Ali H. Verma PR. Dubey SK. Venkatesan J. Seo Y. Kim SK. Singh SK. In vitro–in vivo and pharmacokinetic evaluation of solid lipid nanoparticles of furosemide using Gastroplus™. RSC advances. 2017; 7(53): 33314-26.
82. Patel N. Pathak SM. Turner DB. Application of the Simcyp Population‐based PBPK Simulator to the Modelling of MR Formulations. Oral Drug Delivery for Modified Release Formulations. 2022: 355-74.
83. Park K. Otte A Park H. Perspective on drug delivery in 2050. Journal of Controlled Release. 2022; 344: 157-9.
84. Osouli-Bostanabad K. Puliga S. Serrano DR. Bucchi A. Halbert G. Lalatsa A. Microfluidic manufacture of lipid-based nanomedicines. Pharmaceutics. 2022; 14(9): 1940.
85. Galbis Fuster E. Iglesias N. Lucas Rodríguez R. Tinajero Díaz E. Paz Báñez MV. Muñoz Guerra S et al. Validation of Smart Nanoparticles as Controlled Drug Delivery Systems: Loading and pH-Dependent Release of Pilocarpine. ACS Omega, 2018; (3): 375-382.
86. Kamsani NH. Haris MS. Pandey M. Taher M. Rullah K. Biomedical application of responsive ‘smart’electrospun nanofibers in drug delivery system: A minireview. Arabian Journal of Chemistry. 2021; 14(7): 103199.
87. Kalaydina RV. Bajwa K. Qorri B. Decarlo A. Szewczuk MR. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. International Journal of Nanomedicine. 2018: 4727-45.
88. Kang JH. Hwang JY. Seo JW. Kim HS. Shin US. Small intestine-and colon-specific smart oral drug delivery system with controlled release characteristic. Materials Science and Engineering: C. 2018; 91: 247-54.
89. Zhao Y. Ran B. Xie X. Gu W. Ye X. Liao J. Developments on the Smart Hydrogel-Based Drug Delivery System for Oral Tumor Therapy. Gels. 2022; 8(11): 741.
90. Aghabegi Moghanjoughi A. Khoshnevis D. Zarrabi A. A concise review on smart polymers for controlled drug release. Drug Delivery and Translational Research. 2016; 6: 333-40.
91. Tao Y. Chan HF. Shi B. Li M. Leong KW. Light: a magical tool for controlled drug delivery. Advanced Functional Materials. 2020; 30(49): 2005029.
92. Yun Y. Lee BK. Park K. Controlled drug delivery systems: the next 30 years. Frontiers of Chemical Science and Engineering. 2014; 8: 276-9.
93. Yun Y. Lee BK. Park K. Controlled drug delivery systems: the next 30 years. Frontiers of Chemical Science and Engineering. 2014; 8: 276-9.
94. Rout SR. Gowtham K. Sheikh A. Parvez S. Dandela R. Kesharwani P. Recent advances and future prospective of hybrid drug delivery systems. Hybrid Nanomaterials for Drug Delivery. 2022; 1: 357-74.
95. Salerno A. Netti PA. Review on computer-aided design and manufacturing of drug delivery scaffolds for cell guidance and tissue regeneration. Frontiers in Bioengineering and Biotechnology. 2021; 9: 682133.
96. Bharatam PV. Computer-Aided Drug Design. In Drug Discovery and Development: From Targets and Molecules to Medicines, Edited by Poduri, R, Springer: Singapore, 2021; 137–210. https://doi.org/10.1007/978-981-15-5534-3_6.
97. Sharma PK. Choudhury D. Yadav V. Murty US. Banerjee S. 3D printing of nanocomposite pills through desktop vat photopolymerization (stereolithography) for drug delivery reasons. 3D Printing in Medicine. 2022; Jan 17; 8(1): 3.
98. Pandey M. Choudhury H. Fern JL. Kee AT. Kou J. Jing JL et al. 3D printing for oral drug delivery: a new tool to customize drug delivery. Drug Delivery and Translational Research. 2020; 10: 986-1001.