Author(s):
Yudith Annisa Ayu Rezkitha, Isna Mahmudah, Supriyanto, Edwin Danardono, Langgeng Agung Waskito, Reny I'tishom, Yoshio Yamaoka, Muhammad Miftahussurur
Email(s):
muhammad-m@fk.unair.ac.id
DOI:
10.52711/0974-360X.2025.00650
Address:
Yudith Annisa Ayu Rezkitha1, Isna Mahmudah2, Supriyanto3, Edwin Danardono4, Langgeng Agung Waskito2, Reny I'tishom5, Yoshio Yamaoka6,7,8, Muhammad Miftahussurur8,9*
1Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia.
2Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia.
3Departement of Surgery Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, 65145, Indonesia.
4Department of Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60286, Indonesia.
5Department of Medical Biology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60131, Indonesia.
6Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Japan.
7Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA.
8Division of G
Published In:
Volume - 18,
Issue - 9,
Year - 2025
ABSTRACT:
Colorectal cancer (CRC) is among the most common cancers worldwide. Due to continued innovations in diagnosis and treatment methods, CRC continues to contribute significantly to cancer-related deaths. Invasive methods, such as endoscopy, are still the most commonly used in CRC diagnostics. However, it is not suitable for countries with limited endoscopy facilities and expertise a major problem in developing countries. Biomarkers nowadays are playing an important role in the identification and therapy of CRC patients. Despite many important technological and methodological advances, some low-invasive biomarkers, including carcinoembryonic antigen, carbohydrate antigen 19-9, tissue polypeptide specific antigen (TPS) and tumor-associated glycoprotein-72, circulating tumor DNA, Insulin-like growth-factor binding protein 2, hematopoietic growth factor and circulating tumor cell. Although various biomarkers have been known, their application has not been widely used in developing countries. Each biomarker has its own characteristics in its use in the management of CRC patients. A combined set of TPS and hematopoietic growth factor has the potential as a diagnostic method for the detection method in early stages in developing countries.
Cite this article:
Yudith Annisa Ayu Rezkitha, Isna Mahmudah, Supriyanto, Edwin Danardono, Langgeng Agung Waskito, Reny I'tishom, Yoshio Yamaoka, Muhammad Miftahussurur. The Suitable Biomarkers of Colorectal Cancer for Developing Countries. Research Journal of Pharmacy and Technology. 2025;18(9):4527-5. doi: 10.52711/0974-360X.2025.00650
Cite(Electronic):
Yudith Annisa Ayu Rezkitha, Isna Mahmudah, Supriyanto, Edwin Danardono, Langgeng Agung Waskito, Reny I'tishom, Yoshio Yamaoka, Muhammad Miftahussurur. The Suitable Biomarkers of Colorectal Cancer for Developing Countries. Research Journal of Pharmacy and Technology. 2025;18(9):4527-5. doi: 10.52711/0974-360X.2025.00650 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-9-70
REFERENCES:
1. Kuipers EJ, Rosch T, Bretthauer M. Colorectal cancer screening - Optimizing current strategies and new directions. Nature Reviews Clinical Oncology. 2013; 10(3): 130-142. https:// doi:10.1038/nrclinonc.2013.12
2. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Gastroenterology Review. 2019; 14(2): 89-103. https://doi:10.5114/pg.2018.81072
3. Wong MCS, Ding H, Wang J, Chan PSF, Huang J. Prevalence and risk factors of colorectal cancer in Asia. 2019; 17(3): 317-329. https://doi.org/10.5217%2Fir.2019.00021
4. Waters C. Colorectal cancer: An overview. Pharmaceutical Journal. 2006; 276(7392): 323-326. https://doi:10.5958/2231-5659.2020.00040.5
5. Wang G, Divall S, Radovick S, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018; 359(6378): 926-930. https://doi.org/10.1126/science.aar3247
6. Jelski W, Mroczko B. Biochemical markers of colorectal cancer – present and future. Cancer Management and Research. 2020; 12: 4789-4797. https://doi:10.2147/CMAR.S253369
7. Lech G, Słotwiński R, Słodkowski M, Krasnodębski IW. 2016 Colorectal Cancer : Global view Colorectal cancer tumour markers and biomarkers : Recent therapeutic advances. 2016; 22(5): 1745-1755. https://doi:10.3748/wjg.v22.i5.1745
8. Bin-Bin Su, Shi H, Wan J. Role of serum carcinoembryonic antigen in the detection of colorectal cancer before and after surgical resection. World journal of gastroenterology. 2012;18(17):2121–2126. https://doi:10.3748/wjg.v18.i17.2121
9. Shen C, Hu L, Xia L, Li Y. Quantitative Real-time RT – PCR Detection for Survivin , CK20 and CEA in Peripheral Blood of Colorectal Cancer Patients. 2008; 38(11): 770-776. https://doi:10.1093/jjco/hyn105
10. Gonzalez-Pons M, Cruz-Correa M. Colorectal Cancer Biomarkers: Where Are We Now? BioMed Research International. 2015;2015. https://doi:10.1155/2015/149014
11. Management C, Jelski W, Mroczko B. Biochemical Markers of Colorectal Cancer – Present and Future. Published online 2020: 4789-4797. https://doi.org/10.2147%2FCMAR.S253369
12. Labianca R, Nordlinger B, Beretta GD, Brouquet A, Cervantes A. Primary colon cancer: ESMO clinical practice guidelines for diagnosis, adjuvant treatment and follow-up. Annals of Oncology. 2010;21(SUPPL. 5):70-77. https://doi:10.1093/annonc/mdq168
13. Locker GY, Hamilton S, Harris J, et al. J OURNAL OF C Linical O Ncology ASCO 2006 Update of Recommendations for the Use of Tumor Markers in Gastrointestinal Cancer. 2015; 24(33): 5313-5327. https://doi:10.1200/JCO.2006.08.2644
14. Holubec L, Sturgeon C. gastrointestinal stromal cancers : European group on tumor markers 2014 guidelines update. 2014; 2522: 2513-2522. https://doi:10.1002/ijc.28384
15. Duffy MJ, Dalen A Van, Haglund C, et al. Tumour markers in colorectal cancer : European Group on Tumour Markers ( EGTM ) guidelines for clinical use. 2007; 3. https://doi:10.1016/j.ejca.2007.03.021
16. Jia J, Zhang P, Gou M, Yang F, Qian N, Dai G. The role of serum CEA and CA19-9 in efficacy evaluations and progression-free survival predictions for patients treated with cetuximab combined with FOLFOX4 or FOLFIRI as a first-line treatment for advanced colorectal cancer. Disease Markers. 2019; 2019. https://doi:10.1155/2019/6812045
17. Stiksma J, Grootendorst DC, Van Der Linden PWG. CA 19-9 as a marker in addition to CEA to monitor colorectal cancer. Clinical Colorectal Cancer. 2014; 13(4): 239-244. https://doi:10.1016/j.clcc.2014.09.004
18. Vukobrat-bijedic Z, Husic-selimovic A, Sofic A, et al. Cancer Antigens (CEA and CA 19-9) as Markers of Advanced Stage of Colorectal Carcinoma. 2013; 67(6): 397-401. https://doi:10.5455/medarh.2013.67.397-401
19. Sabine von Kleist. The clinical value of the tumor markers CA 19 / 9 and carcinoembryonic antigen ( CEA ) in colorectal carcinomas : A critical comparison. 1986; 1(1): 3-8. https://doi.org/10.1177/172460088600100102
20. Thomsen M, Skovlund E, Sorbye H, et al. Prognostic role of carcinoembryonic antigen and carbohydrate antigen 19-9 in metastatic colorectal cancer : a BRAF -mutant subset with high CA 19-9 level and poor outcome. British Journal of Cancer. 2018; (April). https://doi:10.1038/s41416-018-0115-9
21. Nicolini A, Ferrari P, Duffy MJ et al. Intensive Risk-Adjusted Follow-up With the CEA, TPA, CA19.9, and CA72.4 Tumor Marker Panel and Abdominal Ultrasonography to Diagnose Operable Colorectal Cancer Recurrences. 2015; 145(12): 1177-1183. https://doi.org/10.1001/archsurg.2010.251
22. Carpelan-holmström M, Louhimo J, Stenman U håkan. CEA , CA 242 , CA 19-9 , CA 72-4 and hCG ß in the Diagnosis of Recurrent Colorectal Cancer. Published online 2004: 228-234. https://doi:10.1159/000081385
23. Lumachi F, Marino F, Orlando R, Chiara GB, Basso SMM. Simultaneous multianalyte immunoassay measurement of five serum tumor markers in the detection of colorectal cancer. Anticancer Research. 2012; 32(3): 985-988. https://pubmed.ncbi.nlm.nih.gov/22399621/
24. Levy M, Visokai V, Lipska L, Topolcan O. Tumor markers in staging and prognosis of colorectal carcinoma. Published online 2008: 138-142. https://pubmed.ncbi.nlm.nih.gov/18237252/
25. Lu-Ning Zhang, MD, Pu-Yun OuYang, MD, Wei-Wei Xiao, MD, Xin Yu, MD, Kai-Yun You M, Zhi-Fan Zeng, MD, Rui-Hua Xu, MD, and Yuan-Hong Gao M. Elevated CA19-9 as the Most Significant Prognostic Factor in Locally Advanced Rectal Cancer Following. 2015; 94(45): 1-7. https://doi:10.1097/MD.0000000000001793
26. Nakatani H, Kumon T, Kumon M, et al. High serum levels of both carcinoembryonic antigen and carbohydrate antigen 19-9 in a patient with sigmoid colon cancer without metastasis. 2012; 59(1): 280-283. https://doi.org/10.2152/jmi.59.280
27. Filella X, Molina R, Grau JJ, et al. Prognostic value of CA 19.9 levels in colorectal cancer. Annals of surgery. 1992; 216(1): 55-59. https://doi:10.1097/00000658-199207000-00008
28. Du V Van, Lam ND, Tung D Van. Valuating concentration of Cea, Ca 19-9 and some biochemical parameters in patients with colorectal cancer. International Journal of Advances in Nursing Management. 2018; 6(2): 93. https://doi:10.5958/2454-2652.2018.00020.3
29. Kornek G, Schenk T, Raderer M, Djavarnmad M, Scheithauer W. Tissue polypeptide-specific antigen (TPS) in monitoring palliative treatment response of patients with gastrointestinal tumours. Published Online 1995:182-185.
30. Swiderska M, Choromańska B, Da̧browska E, et al. The diagnostics of colorectal cancer. Wspolczesna Onkologia. 2014; 18(1): 1-6. https://doi:10.5114/wo.2013.39995
31. Kucera R, Topolcan O, Fiala O, Kinkorova J, Treska V. The Role of TPS and TPA in the Diagnostics of Distant Metastases. 2016; 778: 773-777. https://pubmed.ncbi.nlm.nih.gov/26851038/
32. Negm RS, Verma M, Srivastava S. The promise of biomarkers in cancer screening and detection. 2002; 8(6): 288-293. https://doi.org/10.1016/s1471-4914(02)02353-5
33. Stramignoni D, Bowen R, At BF, Son KIN, Schlom J. Differential Reactivity Of Monoclonal Antibodies With Human Colon Adenocarcinomas And Adenomas. 1983; 552: 543-552. https://doi.org/10.1002/ijc.2910310504
34. Guadagni F, Roselli M, Amato T. Clinical Evaluation of Serum Tumor-Associated Glycoprotein-72 as a Novel Tumor Marker for Colorectal Cancer Patients. 1991; 20: 16-20. https://doi.org/10.1002/jso.2930480506
35. Guadagni F, Roselli M, Cosimelli M, et al. Biologic Evaluation of Tumor- Associated Glycoprotein-72 and Carcinoembryonic Antigen Expression in Colorectal Cancer.1994; 37(Suppl 2): 16-23. https://doi.org/10.1007/bf02048426
36. Vacante M, Borzì AM, Basile F, et al. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. 2018; 6(15): 869-882. https://doi:10.12998/wjcc.v6.i15.869
37. Guadagni F, Roselli M, Cosimelli M, et al. TAG-72 (CA 72-4 Assay) as a Complementary Serum Tumor Antigen to Carcinoembryonic Antigen in Monitoring Patients with Colorectal Cancer. 1994: 72(7): 2098-106. https://doi.org/10.1002/1097-0142(19931001)72:7%3C2098::aid-cncr2820720707%3E3.0.co;2-g
38. Cho J, Kim K mee, Cheol H, Yong W. The prognostic role of tumor associated glycoprotein 72 (TAG-72 ) in stage II and III colorectal adenocarcinoma. Pathology - Research and Practice. 2018;72(August):0-1. https://doi:10.1016/j.prp.2018.10.024
39. Mouliere F, Rosenfeld N. Circulating tumor-derived DNA is shorter than somatic DNA in plasma. 2015; 112(11): 3178-3179. https://doi:10.1073/pnas.1501321112
40. Anker P, Mulcahy H, Chen XQ, Stroun M. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer metastasis reviews. 1999; 18(1): 65-73. https://doi:10.1023/a:1006260319913
41. Bi F, Wang Q, Dong Q, Wang Y, Zhang L, Zhang J. Circulating tumor DNA in colorectal cancer : opportunities and challenges. 2020; 12(3): 1044-1055. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137038/
42. Petit J, Carroll G, Gould T, et al. Cell-free DNA as a Diagnostic Blood-Based Biomarker for Colorectal Cancer : A Systematic Review. Journal of Surgical Research. 2018; 236(02): 184-197. https://doi:10.1016/j.jss.2018.11.029
43. Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Analysis of the Size Distributions of Fetal and Maternal Cell-Free DNA by Paired-End Sequencing. 2010; 1286: 1279-1286. https://doi:10.1373/clinchem.2010.144188
44. Luo H, Zhao Q, Wei W, et al. Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer. Science Translational Medicine. 2020; 12(524). https://doi:10.1126/scitranslmed.aax7533
45. Anker P, Mulcahy H, Chen XQ, Stroun M. Detection of circulating tumour DNA in the blood ( plasma / serum ) of cancer patients. Published online 1999: 65-73.
46. Cristiano S, Leal A, Phallen J, et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. https://doi:10.1038/s41586-019-1272-6
47. Labrecque P, Parent J l. Thromboxane A 2 modulates cisplatin-induced apoptosis through a Siva1-dependent mechanism. Published online 2012: 1347-1357. https://doi:10.1038/cdd.2012.11
48. Swarup V, Rajeswari MR. Circulating ( cell-free ) nucleic acids – A promising , non-invasive tool for early detection of several human diseases. 2007; 581: 795-799. https:// doi:10.1016/j.febslet.2007.01.051
49. Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nature Medicine. 2008; 14(9): 985-990. https://doi:10.1038/nm.1789
50. Reinert T, Schøler L V., Thomsen R, et al. Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut. 2016; 65(4): 625-634. https://doi:10.1136/gutjnl-2014-308859
51. Wang Y, Li L, Cohen JD, et al. Prognostic Potential of Circulating Tumor DNA Measurement in Postoperative Surveillance of Nonmetastatic Colorectal Cancer. Published online 2019: 1-6. doi:10.1001/jamaoncol.2019.0512
52. Vocka M, Langer D, Fryba V, et al. Novel serum markers HSP60 , CHI3L1 , and IGFBP-2 in metastatic colorectal cancer. Published online 2019: 6284-6292. https://doi:10.3892/ol.2019.10925
53. Kushlinskii NE, Gershtein ES, Nikolaev AA, et al. Insulin-Like Growth Factors ( IGF ), IGF-Binding Proteins (IGFBP), and Vascular Endothelial Growth Factor ( VEGF ) in Blood Serum of Patients with Colorectal Cancer. 2014; 156(5): 684-688. https://doi.org/10.1007/s10517-014-2425-0
54. Rachiglio AM, Sacco A, Forgione L, Esposito C, Chicchinelli N. Colorectal cancer genomic biomarkers in the clinical management of patients with metastatic colorectal carcinoma Current biomarkers. Exploration of Targeted Anti-tumor Therapy. 2020; 1: 53-70. https://doi:10.37349/etat.2020.00004
55. Liou J ming, Shun C tung, Liang J tung, et al. Plasma Insulin-Like Growth Factor-Binding Protein-2 Levels as Diagnostic and Prognostic Biomarker of Colorectal Cancer. 2015; 95(August): 1717-1725. doi:10.1210/jc.2009-2668
56. Lee E ju, Mircean C, Shmulevich I, et al. Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. 2005; 8: 1-8. https://doi:10.1186/1476-4598-4-7
57. Park KH, Gad E, Goodell V, et al. Insulin-like growth factor binding protein 2 is a target for the immunomodulation of breast cancer. 2009; 68(20): 8400-8409. https://doi:10.1158/0008-5472.CAN-07-5891
58. Hoeflich A, Reisinger R, Lahm H, et al. Insulin-like Growth Factor-binding Protein 2 in Tumorigenesis : Protector or Promoter ? 2001; (44): 8601-8610. https://pubmed.ncbi.nlm.nih.gov/11751371/
59. Elmlinger M, Langhammer M, Martin G, Wolf E, Lahm H, Hoeflich A. IGFBP-2 overexpression reduces the appearance of dysplastic aberrant crypt foci and inhibits growth of adenomas in chemically induced colorectal carcinogenesis. 2009; 2225: 2220-2225. https://doi:10.1002/ijc.24193
60. Kaaks R, Toniolo P, Akhmedkhanov A, et al. IGF-Binding Proteins, and Colorectal Cancer Risk in Women may increase colorectal cancer risk, possibly by decreasing. 2000; 92(19). https://doi.org/10.1093/jnci/92.19.1592
61. Lahm H, Amstad P, Yilmaz A, et al. Interleukin 4 down-regulates expression of c-kit and autocrine stem cell factor in human colorectal carcinoma cells. 1995; 6. https://pubmed.ncbi.nlm.nih.gov/8519688/
62. Lahm H, Wyniger J, Hertig S, Yilmaz A, Fischer R, Givel J claude. Advances in Brief Secretion of Bioactive Granulocyte-Macrophage Colony-stimulating Factor by Human Colorectal Carcinoma Cells1. Published online 1994: 3700-3702. https://pubmed.ncbi.nlm.nih.gov/8033086/
63. Mroczko B, Szmitkowski M, Okulczyk B. Hematopoietic Growth Factors in Colorectal Cancer Patients. 2003; 41(5): 646-651. https://doi.org/10.1515/cclm.2003.098
64. Avalos BBR, Gasson JC, Hedvat C, et al. Human Granulocyte Colony-Stimulating Factor: Biologic Activities and Receptor Characterization on Hematopoietic Cells and Small Cell Lung Cancer Cell Lines. 2015; (February). https://doi:10.1182/blood.V75.4.851.bloodjournal754851
65. Dunlop RJ, Chb MB, Campbell CW, Chb MB, Christopher S, C PAHCW. Cytokines and Advanced Cancer. 2000; 20(3): 214-232. https://doi.org/10.1016/s0885-3924(00)00199-8
66. Pei X hai, Nakanishi Y, Takayama K, et al. Granulocyte-colony stimulating factor promotes invasion by human lung cancer cell lines in vitro. 1996; 14(4): 351-357.
67. Mroczko B, Szmitkowski M, Okulczyk B. Granulocyte-Colony Stimulating Factor (G-CSF) and Macrophage- Colony Stimulating Factor (M-CSF) in Colorectal Cancer Patients. 2002; 40(4): 351-355. https://doi.org/10.1515/cclm.2002.056
68. Kaifi JT, Kunkel M, Dicker DT, et al. Circulating tumor cell levels are elevated in colorectal cancer patients with high tumor burden in the liver Circulating tumor cell levels are elevated in colorectal cancer patients with high tumor burden in the liver. 2015; 4047. htttps://doi:10.1080/15384047.2015.1026508
69. Cohen SJ, Punt CJA, Iannotti N, et al. Relationship of Circulating Tumor Cells to Tumor Response, Progression-Free Survival, and Overall Survival in Patients With Metastatic Colorectal Cancer. 2008; 26(19): 3213-3222. https://doi:10.1200/JCO.2007.15.8923
70. Galanzha EI, Zharov VP. Circulating Tumor Cell Detection and Capture by Photoacoustic Flow Cytometry in Vivo and ex Vivo. Published online 2013: 1691-1738. https://doi:10.3390/cancers5041691
71. Li P, Stratton ZS, Dao M, Ritz J, Huang TJ. Probing circulating tumor cells in microfluidics. 2014; 13(4): 602-609. https://doi:10.1039/c2lc90148j.Probing
72. Pesta M, Kulda V, Narsanska A, Fichtl J, Topolcan O. May CTC technologies promote better cancer management ? Published online 2015:1-9. https://doi:10.1186/s13167-014-0023-x
73. Gulshan M, Rao NR. Biomarkers: An imperative accession for diagnosis of a disease and drug development. Asian Journal of Pharmaceutical and Clinical Research. 2017; 10(5): 57-63. doi:10.22159/ajpcr.2017.v10i5.17559
74. Khan Y, Saroj BK, Roy M, Aziz I. A Review-Emerging Use of Nano-Based Carriers in Diagnosis and Treatment of Cancer-Novel Approaches. Asian Journal of Pharmacy and Technology. 2015; 5(1): 38. https://doi:10.5958/2231-5713.2015.00008.2
75. Bresalier RS, Grady WM, Markowitz SD, Nielsen HJ, Batra SK, Lampe PD. Biomarkers for early detection of colorectal cancer: The early detection research network, a framework for clinical translation. Cancer Epidemiology Biomarkers and Prevention. 2020; 29(12): 2431-2440. https://doi:10.1158/1055-9965.EPI-20-0234
76. Osborne JM, Wilson C, Moore V, Gregory T, Flight I, Young GP. Sample preference for colorectal cancer screening tests: Blood or stool? Open Journal of Preventive Medicine. 2012; 02(03): 326-331. https://doi:10.4236/ojpm.2012.23047
77. Zorzi M, Fedeli U, Schievano E, et al. Impact on colorectal cancer mortality of screening programmes based on the faecal immunochemical test. Gut. 2015; 64(5): 784-790. https://doi:10.1136/gutjnl-2014-307508
78. Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: Systematic review and meta-analysis of randomised controlled trials and observational studies. BMJ (Online). 2014;348(April). https://doi:10.1136/bmj.g2467
79. Thalkari AB, Karwa PN, Priyanka S. Nanotechnology: The Future. Asian Journal of Pharmacy and Technology. 2019; 9(1): 40. https://doi:10.5958/2231-5713.2019.00008.4
80. Issa IA, NouredDine M. Colorectal cancer screening: An updated review of the available options. World Journal of Gastroenterology. 2017; 23(28): 5086-5096. https://doi:10.3748/wjg.v23.i28.5086
81. Quentmeier A, Moller P, Schwarz V, Abel U. Carcinoembryonic Antigen, CA 7 9-9, and CA 125 in Normal and Carcinomatous Human Colorectal Tissue. Published online 1990; 60 (9): 2261-2266 https://doi.org/10.1002/1097-0142(19871101)60:9%3C2261::aid-cncr2820600926%3E3.0.co;2-p
82. Gao Z, Chen Z, Deng J, Li X, Qu Y, Xu L. Measurement of Carcinoembryonic Antigen in Clinical Serum Samples Using a Centrifugal Microfluidic Device. https://doi:10.3390/mi9090470
83. Gu J, Wang D, Huang Y, Lu Y, Peng C. Diagnostic value of combining CA 19-9 and K-ras gene mutation in pancreatic carcinoma: A meta-analysis. International Journal of Clinical and Experimental Medicine. 2014; 7(10): 3225-3234. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238530/
84. Onur R, Orhan I, Ilhan N, Semercioz A. Role of tissue polypeptide specific antigen in the detection of prostate cancer. Urologia Internationalis. 2002; 69(4): 278-282. https://doi:10.1159/000066124
85. Mariampillai AI, Cruz JP Dela, Suh J, Sivapiragasam A, Nevins K, Hindenburg AA. Cancer antigen 72-4 for the monitoring of advanced tumors of the gastrointestinal tract, lung, breast and ovaries. Anticancer Research. 2017; 37(7): 3649-3656. https://doi:10.21873/anticanreS.11735
86. Petit J, Carroll G, Gould T, Pockney P, Dun M, Scott RJ. Cell-free DNA as a Diagnostic Blood-Based Biomarker for Colorectal Cancer: A Systematic Review. Journal of Surgical Research. 2019;236(02):184-197. https://doi:10.1016/j.jss.2018.11.029
87. Li H, Jing C, Wu J, et al. Circulating tumor DNA detection: A potential tool for colorectal cancer management. Oncology Letters. 2019;17(2):1409-1416. https://doi:10.3892/ol.2018.9794
88. Yoneyama T, Ohtsuki S, Honda K, et al. Identification of IGFBP2 and IGFBP3 as compensatory biomarkers for CA19-9 in early-stage pancreatic cancer using a combination of antibody-based and LC-MS/MS-based proteomics. PLoS ONE. 2016; 11(8): 1-23. https://doi:10.1371/journal.pone.0161009