Author(s):
Shofiatul Fajriyah, Erni Anikasari, Muh. Shofi, Nurul Istiqomah, Dyah Aryantini
Email(s):
shofiatul.fajriyah@iik.ac.id
DOI:
10.52711/0974-360X.2025.00645
Address:
Shofiatul Fajriyah1*, Erni Anikasari1, Muh. Shofi2, Nurul Istiqomah2, Dyah Aryantini2
1Department of Clinical Pharmacology, Institut Ilmu Kesehatan Bhakti Wiyata Kediri, Jl. KH. Wachid Hasyim 65, Kediri, 64114, Indonesia.
2Department of Pharmaceutical Biology, Institut Ilmu Kesehatan Bhakti Wiyata Kediri, Jl. KH. Wachid Hasyim 65, Kediri, 64114, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 9,
Year - 2025
ABSTRACT:
Antioxidants potential in plants are still widely explored, Ruellia tuberosa L. was a wild growing shrubs and traditionally used to lower blood sugar, treat wounds, and relieve pain. This plant has been underutilized in vitro and in silico research while having antioxidant activities. Testing the antioxidant activity of the extract and its fractions, doing in silico research, and qualitative and quantitative analysis of the phytochemical composition were the objectives of this work. Phytochemical analysis of the extract and its fractions was identified qualitatively by color testing and quantitatively by spectrophotometry. Antioxidant testing was carried out using the DPPH, FRAP, and ABTS assay methods. The active fraction was then identified by GC-MS to determine the content of secondary metabolites, which were then tested in silico along with software such as PyRx, Autodock Vina, and Discovery Studio 2021. Secondary metabolites were found in all samples' qualitative phytochemical analysis results, and they were found in the extract and its fractions in different ways. Quantitatively, the largest TPC and TFC (161.18±9.70µg GAE/g and 224.74±10.16µg QE/g) and providing the strongest antioxidant activity were EAF with the DPPH method (55.51±2.52), Frap (53.55±2.89) and ABTS (42.77±2.13)µg/mL. In silico studies have shown that the compound. EAF is an active fraction containing the highest phenolic and flavonoid compounds and contributes directly to antioxidant activity. Meanwhile, by in silico approcah 6-Carbomethoxy-Trans-1-Oxaspiro[4.5]Decan-2,8-Dione presents opportunities for further development, but may require structural modifications to enhance its efficacy
Cite this article:
Shofiatul Fajriyah, Erni Anikasari, Muh. Shofi, Nurul Istiqomah, Dyah Aryantini. Phytochemical Study and Bioactivity of Ruellia tuberosa L. Leaf Extract: An In vitro and In silico approach. Research Journal of Pharmacy and Technology. 2025;18(9):4497-4. doi: 10.52711/0974-360X.2025.00645
Cite(Electronic):
Shofiatul Fajriyah, Erni Anikasari, Muh. Shofi, Nurul Istiqomah, Dyah Aryantini. Phytochemical Study and Bioactivity of Ruellia tuberosa L. Leaf Extract: An In vitro and In silico approach. Research Journal of Pharmacy and Technology. 2025;18(9):4497-4. doi: 10.52711/0974-360X.2025.00645 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-9-65
REFERENCES:
1. Mihaylova D. Popova A. Phytochemicals of Natural Products: Analysis and Biological Activities. Hortic 2023; 9(2): 167. doi.org/10.3390/HORTICULTURAE9020167
2. Haruna A.Yahaya SM. Recent Advances in the Chemistry of Bioactive Compounds from Plants and Soil Microbes: a Review. Chemistry Africa. 2021; 4(2): 231–48. doi.org/10.1007/s42250-020-00213-9
3. Dutta S. Hazra K. Ghosal S. Paria D. Hazra J. Rao MM. Morpho-Anatomical and Phytochemical Characterisation of Traditionally Used Plant Ruellia tuberosa L. Leaves and Roots. International Journal of Pharmacognosy. 2020; 7(1): 12–22. doi.org/10.13040/IJPSR.0975-8232.IJP.7
4. Chothani DL. Patel MB. Mishira SH. Vaghasiya HU. Review on Ruellia tuberosa (cracker plant). Pharmacognosy Journal. 2010; 2(12): 506–12. doi.org/10.1016/S0975-3575(10)80040-9
5. Afzal K. Uzair M. Chaudhary BA. Ahmad A. Afzal S. Saadullah M. Genus Ruellia: Pharmacological and Phytochemical Importance in Ethnopharmacology. Acta Poloniae Pharmaceutica - Drug Research. 2015; 72(5): 821–7.
6. Afzal K, Uzair M, Chaudhary BA, Akhtar S, Ahmad A, Afzal S. Isolation of Squarrosal and Squarrosol Compounds from Methanol Root Extract of Ruellia squarrosa (Acanthaceae). Tropical Journal of Pharmacy Research. 2018; 17(4): 647–52.
7. Khachitpongpanit S. Singhatong S. Sastraruji T. Jaikang C. Phytochemical Study of Ruellia tuberosa Chloroform Extract: Antioxidant and Anticholinesterase Activities. Der Pharmacia Lettre. 2016; 8(6): 238–44.
8. Roosdiana A. Permata FS. Fitriani RI. Umam K. Safitri A. Ruellia tuberosa L. Extract Improves Histopathology and Lowers Malondialdehyde Levels and TNF alpha Expression in the Kidney of Streptozotocin-induced Diabetic Rats. Veterinary Medical International. 2020.doi.org/10.1155/2020/8812758
9. Safitri A. Roosdiana A. Rosyada I. Evindasari CA. Muzayyana Z. Rachmawanti R. Phytochemicals Screening and Anti-oxidant Activity of Hydroethanolic Extracts of Ruellia tuberosa L. IOP Conf Ser Mater Sci Eng. 2019; 509(1). doi.org/10.1088/1757-899X/509/1/012017
10. Chen HJ. Ko CY. Xu JH. Huang YC. Wu JSB. Shen SC. Alleviative Effect of Ruellia tuberosa L. On Insulin Resistance and Abnormal Lipid Accumulation in TNF- α -Treated FL83B Mouse Hepatocytes. Evidence-based Complementary Alternative Medicine. 2021; 2021: 1–8. doi.org/10.1155/2021/9967910
11. Krishnaveni M. Krishna Kumari G. Ragina Banu C. Kalaivani M. Phytochemical Analysis of Terminalia catappa stem using GC-MS/MS. Research Journal of Pharmacy and Technology. 2015; 8(9): 1281–3. doi.org/10.5958/0974-360X.2015.00232.2
12. Shaikh JR. Patil M. Qualitative Tests for Preliminary Phytochemical Screening: An overview. International Journal of Chemical Study. 2020; 8(2): 603–8. doi.org/10.22271/chemi.2020.v8.i2i.8834
13. Saravanan KM. Phytoconstituent Screening and In Vitro Hypoglycemic and Antioxidant Properties of Terpenoid Fraction of Kaempferia pulchra Extracts in Indian Traditional Medicine. Journal of Herbmed of Pharmacology. 2023; 12(3): 2. doi.org/10.34172/jhp.2023.20
14. Pandey A. Tripathi S. Pandey CA. Concept of Standardization, Extraction and Pre-phytochemical Screening Strategies for Herbal Drug. Journal Pharmacognosy Phytochem. 2014; 115(25): 115–9.
15. Blois MS. Antioxidant Determinations by the Use of a Stable Free Radical. Nature. 1958]; 181: 1199–200.
16. Aryantini D. Astuti P. Yuniarti N. Wahyuono S. Bioassay-guided Isolation of the Antioxidant Constituent from Kaempferia rotunda L. Biodiversitas Journal of Biological Diversity. 2023; 24(6). doi.org/10.13057/BIODIV/D240665
17. Suganya J. Manoharan S. Radha M. Singh N. Francis A. Identification and Analysis of Natural Compounds as Fungal Inhibitors from Ocimum sanctum using In Silico Virtual Screening and Molecular Docking. Research Journal of Pharmacy and Technology. 2017; 10(10): 3369–74. doi.org/10.5958/0974-360X.2017.00599.6
18. Samajdar S. In Silico ADME Prediction of Phytochemicals Present in Piper longum. Asian Journal of Research in Pharmaceutical Science. 2023; 13(2): 89–93. doi.org/10.52711/2231-5659.2023.00017
19. Kamata K. Mitsuya M. Nishimura T. Eiki JI. Nagata Y. Structural Basis for Allosteric Regulation of the Monomeric Allosteric Enzyme Human Glucokinase. Structure. 2004; 12(3): 429–38.doi.org/10.1016/j.str.2004.02.005
20. Abriyani E. Fikayuniar L. Screening Phytochemical, Antioxidant Activity and Vitamin C Assay from Bungo Perak-Perak ( Begonia versicolar irmsch) leaves. Asian Journal of Pharmaceutical Research. 2020; 10(3): 183. doi.org/10.5958/2231-5691.2020.00032.5
21. Guerriero G. Berni R. Muñoz-Sanchez JA. Apone F. Abdel-Salam EM. Qahtan AA. et al. Production of Plant Secondary Metabolites: Examples, tips and suggestions for biotechnologists. Genes (Basel). 2018; 9(6). doi.org/10.3390/genes9060309
22. Rodríguez De Luna SL. Ramírez-Garza RE. Serna Saldívar SO. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Scientific World Journal. 2020. doi.org/10.1155/2020/6792069
23. Francis P. Suseem SR. Phytochemical Analysis and Anti-inflammatory Screening of Strychnos colubrina Linn. Research Journal of Pharmacy and Technology. 2016; 9(2): 165–9. doi.org/10.5958/0974-360X.2016.00029.9
24. Hua X. Hong HJ. Zhang DY. Liu Q. Leong F. Yang Q. et al. Rapid Screening of Lipase Inhibitors from Ophiopogonis Radix Using High-Performance Thin Layer Chromatography by Two Step Gradient Elution Combined with Bioautographic Method. Molecules. 2022; 27(4). dpi.org/ 10.3390/molecules27041155
25. Raharjo D. Haryoto. Antioxidant Activity of Mangrove sonneratia caseolaris L using the FRAP Method. International Summit on Science Technology and Humanity. 2019; 623–9.
26. Baliyan S. Mukherjee R. Priyadarshini A. Vibhuti A. Gupta A. Pandey RP. et al. Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules. 2022; 27(4). doi.org/10.3390/molecules27041326
27. Muheyuddeen G. Husain Rayini S. Yadav P. Kumar Gupta S. In Vivo Analgesics and In Vitro Antioxidants Activity of Newly Synthesized Mannich Bases of Lawsone. Asian Journal of Pharmaceutical Research. 2023; 13(1): 11–7. doi.org/10.52711/2231-5691.2023.00002
28. Hemmalakshmi S. Annapurani S. Devi SG. Comparative Phytochemical Screening and Total Phenolic Content of Different Extracts of Ficus racemosa, Morinda tinctoria and Nerium indicum fresh leaves. Research Journal of Pharmacy and Technology. 2016; 9(12): 2222. doi.org/10.5958/0974-360X
29. Chen FA. Wu AB. Shieh P. Kuo DH. Hsieh CY. Evaluation of the Antioxidant Activity of Ruellia tuberosa. Food Chemistry. 2006; 94(1): 14–8. doi.org/10.1016/j.foodchem.2004.09.046
30. Sianturi GLR. Trisnawati EW. Koketsu M. Suryanti V. Chemical Constituents and Antioxidant Activity of Britton’s Wild Petunia (Ruellia brittoniana) Flower. Biodiversitas. 2023; 24(7): 3665–72.doi.org/10.13057/biodiv/d240703
31. Huang R. Zhang Y. Shen S. Zhi Z. Cheng H. Chen S. et al. Antioxidant and Pancreatic Lipase Inhibitory Effects of Flavonoids from Different Citrus Peel Extracts: An In Vitro Study. Food Chemistry. 2020;326.doi.org/10.1016/j.foodchem.2020.126785
32. Wootton-Beard PC. Ryan L. Improving Public Health?: The role of Antioxidant-rich Fruit and Vegetable Beverages. Food Research International. 2011; 44(10): 3135–48. doi.org/10.1016/J.FOODRES.2011.09.015
33. Rajendran R. Hemachander R. Ezhilarasan T. Keerthana C. Saroja D. Saichand K. et al. Phytochemical Analysis and In-Vitro Antioxidant Activity of Mimosa pudica Lin., Leaves. Research Journal of Pharmacy and Technology. 2010; 3(2): 551–5. doi.org/10.5958/0974-360X
34. Retnaningtyas E. Setiawan A. Susatia B. Hariyanto T. Sudiwati NLPE. In Silico Studies of Ruellia tuberosa L. Compounds as Aldose Reductase, Dipeptidyl Peptidase 4, and α-Glucosidase Inhibitors Against Type 2 Diabetes Mellitus. Journal of Pharmacy Pharmacognosy Research. 2024; 12(4): 735–47. doi.org/10.56499/jppres23.1891_12.4.735
35. Kowsalya G. Shanmugasundaram S. In Silico Analysis of Flavanones Capable of Inhibiting Covid19 RNA Dependent RNA Polymerase. Asian Journal Research in Pharmaceutical Science. 2022; 12(2): 97–101. doi.org/10.52711/2231-5659.2022.00016