Author(s):
Em Sutrisna, Sri Wahyuni, Devi Usdiana R, Noor Fadzilah Zulkifli, Nazefah Abd Hamid, Siti Salhah Othman, Farah Wahida Harun, Dzulfadli Rosli
Email(s):
es233@ums.ac.id
DOI:
10.52711/0974-360X.2025.00642
Address:
Em Sutrisna1, Sri Wahyuni1, Devi Usdiana R1, Noor Fadzilah Zulkifli2, Nazefah Abd Hamid2, Siti Salhah Othman3, Farah Wahida Harun3, Dzulfadli Rosli4
1Medical Faculty of Universitas Muhammadiyah Surakarta, Indonesia.
2Faculty of Medicine and health Science of University Sains Islam Malaysia, Malaysia.
3Faculty of Science and Technology, University Sains Islam Malaysia, Malaysia.
4Institue of Fatwa and Halal, University Sains Islam Malaysia, Malaysia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 9,
Year - 2025
ABSTRACT:
Background: In Indonesia there is no antibacterial medicine based on Indonesian medicinal plants Pylantus niruri L. (Meniran) is allegedly to have an antibacterial effect. Objective: This study aims to explore the antibacterial effects of the 96% ethanolic extract of P.niruri and to determine it’s TLC [Thin layer chromatography] Methods: The test design is an invitro study with diffusion and well methods. Bacteria used is S.epidermidis. The plant also performed phytochemical screening to determine the plant content that was suspected to have an antibacterial effect and continued thin layer chromatography. Results: The 96% ethanolic extract of P.niruri at concentrations of 100; 50; 25; 12.5 and 6,125% have an antibacterial effect with inhibition zones of 12,5;18,41; 12,31; 11,09 and 8,83mm. Conclusion: P niruri L. has potency antibacterial toward S. epidermidis
Cite this article:
Em Sutrisna, Sri Wahyuni, Devi Usdiana R, Noor Fadzilah Zulkifli, Nazefah Abd Hamid, Siti Salhah Othman, Farah Wahida Harun, Dzulfadli Rosli. Research Journal of Pharmacy and Technology. 2025;18(9):4477-1. doi: 10.52711/0974-360X.2025.00642
Cite(Electronic):
Em Sutrisna, Sri Wahyuni, Devi Usdiana R, Noor Fadzilah Zulkifli, Nazefah Abd Hamid, Siti Salhah Othman, Farah Wahida Harun, Dzulfadli Rosli. Research Journal of Pharmacy and Technology. 2025;18(9):4477-1. doi: 10.52711/0974-360X.2025.00642 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-9-62
REFERENCES:
1. Kumar S. Khan, Khan HM. Jalal M. Ahmad SH, Shahid M. Husain F M. Arshad M. Adil M. Broad-spectrum antibacterial and antibiofilm activity of biogenic silver nanoparticles synthesized from leaf extract of Phyllanthus niruri. Journal of King Saud University-Science. 2023; 35 (8): 102904. http://dx.doi.org/10.1016/j.jksus.2023.102904
2. Sunitha J. Swathy. Krishna R. Ananthalakshmi J. Sathiya Jeeva. AS Smiline Girija, and Nadeem Jeddy,Antimicrobial Effect of Leaves of Phyllanthus niruri and Solanum nigrum on Caries Causing Bacteria: An In vitro Study. J Clin Diagn Res. 2017; 11(6): KC01–KC04. https://doi.org/10.7860/jcdr/2017/23602.10066
3. Obiagwu IN. Okechalu OB. and Njoku MO. Studies on Antibacterial Effect of The Leaves Of Phyllanthus Niruri on Some Enteric Pathogens. Nig J. Biotech. 2011; 23: 22- 27.
4. Chandana G. Manasa R. Vishwanath S. Shekhara Naik R. Mahesh MS. Antimicrobial activity of Phyllanthus niruri (Chanka piedra). IP Journal of Nutrition, Metabolism and Health Science. 2020; 3(4): 103–108. https://doi.org/10.3390/antibiotics13070654
5. Sutrisna EM. Wahyuni S. Fitriani A. Antibacterial Effect of Nigella sativa L. Seed from Indonesia. Pharmacogn J. 2022; 14(6): 1029-1032. DOI : 10.5530/pj.2022.14.206
6. Mawardika H. Wahyuni D. Khasanah SM. Antibacterial Potency of Jackfruit Leaf Extract (Artocarpus heterophyllus L.) Against Salmonella typhi. Pharmacon: Jurnal Farmasi Indonesia. 2023; 20(2): 195-202
7. Ranasatri AA. Mahmudah N. Aisyah R. Sintowati R. Antibacterial Activity 70% Ethanolic Exctract Of Robusta Coffee Bean (Coffea canephora) Against Staphylococcus epidermidis and Salmonella typhi. Biomedika. 2021; 13(2): 101-106
8. Ambarwati. The effectiveness of antibacteria substances from neem seeds (Azadirachta indica) to impede the growth of Salmonella thyposa and Staphylococcus aureus. Biodeversitas. 2007; 8(3): 320-325. https://doi.org/10.13057/biodiv/d080415
9. Sabarinath C. Sudhakar P. Shanmuganath C. Phytochemical and Antibacterial screening on leaves of Solanum torvum. Asian J. Res. Pharm. Sci. 2018; 8(3): 130-132. https://doi.org/10.5958/2231-5659.2018.00022.X
10. Mohini B. Shelke, Shubham N. Kanawade, Ravindra B. Laware. Antibacterial Activity of the Leaves of Colocasia esculenta Linn. Asian J. of Res. in Pharm.Sci. 2024; 14(1): 107-2. https://doi.org/10.52711/2231-5659.2024.00016
11. Rao N. Mittal S. Sudhanshu, Menghani E. Assessment of Phytochemical Screening, Antioxidant and Antibacterial Potential of the Methanolic Extract of Ricinus communis L. Asian J. Pharm. Tech. 2013; 3(1): 20-25. https://doi.org./ 10.5958/2231–5713
12. Patil SD. Chande BD, Budukhale KM. Damare RV. Kale M. Pathak SS. Evaluation Ixora coccinea Formulation for antibacterial and antioxidant activity. Asian J. Pharm. Tech. 2018; 8 (2): 88-91. https://doi.org/10.5958/2231-5713.2018.00014.4
13. Suaad M. Abuskhuna, Talal H. Zeglam, Omran N. R. Fhid, Asma O. Jebril. Antibacterial Activity of Hydroxyimidazole Derivatives. Asian J. Pharm. Tech. 2020; 10(1): 07-10. https://doi.org/10.5958/2231-5713.2020.00002.1
14. Meera R. Devi P. Madhumitha B. Kameswari B. Antibacterial activity of Crude extracts and Semi synthetic Hydrazone derivatives of Rimelia reticulata. Asian J. Research Chem. 2009; 2(4): 445-447.
15. Debnath S. Manjunath SY. Antibacterial, Anthelmintic, Analgesic and Anti-Inflammatory Activity of Conventional and Microwave Assisted Synthesized 3-(Substituted)-2-Phenylquinazolin-4(3h)-One. Asian J. Research Chem. 2011; 4(9): 1453-1459. https://doi.org/10.37285/ijpsn.2011.4.2.6
16. Mojab F. Kamalinejad M. Naysaneh G. and Hamid RV. Phytochemical Screening of Some Species of Iranian Plants. Iranian Journal of Pharmaceutical Research. 2003; 2(2): 77-82.
17. Sarmistha R. Madhurima D. Shahid J. Sumanta D. Sabyasachi C. Study of Phytochemical Constituents and Antibacterial Activity of Clerodendrum infortunatum. Asian J. Res. Pharm. Sci. 2014; 4(4): 187-195. doi 10.52711/2231-5659
18. Jaiganesh KP. Sreedharren B. Arunachalam G. Nirmala R. Nepolean R Pharmacognostical and Antimicrobial investigation of Jatropha curcas, Linn., Leaf. Asian J. Res. Pharm. Sci. 2013; 3(4): 195-199. https://: 10.52711/2231-5659
19. Punasiya R. Dindorkar G. Pillai S. Antibacterial and Antifungal Activity of Flower extract of Murraya paniculata L. Asian J. Res. Pharm. Sci. 2020; 10(1): 17-20. https://doi.org/10.5958/2231-5659.2020.00004.1
20. Yan Yumei. Xing Li. Chunhong Zhang. Lijuan Lv, Bing Gao, and Minhui L. Research Progress on Antibacterial Activities and Mechanisms of Natural Alkaloids: A Review. Antibiotics (Basel). 2021; 10 (3): 318. https://doi.org/10.3390/antibiotics10030318
21. Liu Y. Cui Y. Lu L. Gong Y. Han W. Piao G. Natural indole-containing alkaloids and their antibacterial activities. Arch. Pharm. 2020; 353: e2000120. https://doi.org/10.1002/ardp.202000120
22. Chen J. Ha LN. Wang XQ. Yang F.Q. Zhang AJ. Zhao Q.G. In vitro antibacterial effect of Matrine on methicillin resistant Staphylococcus aureus. J. Changzhi Med. Coll. 2012; 26: 161–163. https://doi.org/10.1016/S2221-1691(12)60230-5
23. Panche AN. Diwan AD. Chandra SR. Flavonoids: An overview. J. Nutr. Sci. 2016; 5: e47. https://doi.org/10.1017/jns.2016.41
24. Kumar S. Pandey AK. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013; 2013: 162750. https://doi.org/10.1155/2013/162750
25. Heim KE. Tagliaferro AR. Bobilya DJ. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002; 13: 572–584.
26. Lago JHG. Toledo-Arruda A. Mernak M. Barrosa KH. Martins M.A. Tibério, IFLC. Prado CM. Structure-Activity Association of Flavonoids in Lung Diseases. Molecules. 2014; 19: 3570–3595. https://doi.org/10.3390/molecules19033570
27. Alseekh S. de Souza LP. Benina M. Fernie AR The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry. 2020; 174: 112347. https://doi.org/10.1016/j.phytochem.2020.112347
28. Ganjun Y. Yingying G. Shan L. Yi fei S. and Seng C. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Nature Scientific Reports. 2021; 11 (10471). https://doi.org/10.1038/s41598-021-90035-7
29. Leung Y. Ou Y. Kwan C. Loh T. Specific interaction between tetrandrine and Quillaja saponins in promoting permeabilization of plasma membrane in human leukemic HL-60cells. Biochimica et Biophysica Acta [BBA] – Biomembranes. 1997; 1325 (2): 318–328. https://doi.org/10.1016/S0005-2736(97)00002-3
30. Sen S. Makkar HP S. Muetzel S. Becker K. Effect of Quillaja saponaria saponins and Yucca schidigera plant extract on growth of Escherichia coli. Letters in Applied Microbiology. 1998; 27 (1): 35–38. http://dx.doi.org/10.1046/j.1472-765X.1998.00379.x
31. Chwalek M. Lalun N. Bobichon H. Plé K. Voutquenne-Nazabadioko L. Structure-activity relationships of some hederagenin diglycosides: Haemolysis, cytotoxicity and apoptosis induction. Biochimica et Biophysica Acta [BBA] - General Subjects. 2006; 1760 (9): 1418–1427. https://doi.org/10.1016/j.bbagen.2006.05.004
32. Khan MI. Ahhmed A. Shin JH. Baek JS. Kim MY and Kim JD. Green Tea Seed Isolated Saponins Exerts Antibacterial Effects against Various Strains of Gram Positive and Gram Negative Bacteria, a Comprehensive Study In Vitro and In Vivo. Evid Based Complement Alternat Med. 2018; 2018: 3486106. http://dx.doi.org/10.1155/2018/3486106.
33. Natalia W. Szlaur M. Zawadzka K. Lisowska K. The Synergistic Effect of Triterpenoids and Flavonoids-New Approaches for Treating Bacterial Infections? Molecules. 2022; 27(3): 847. https://doi.org/10.3390/molecules27030847
34. Park SN. Lim. YK. Choi MH. Cho E. Bang IS. Kim JM. Ahn SJ. Kook JK. Antimicrobial Mechanism of Oleanolic and Ursolic Acids on Streptococcus mutans UA159. Curr Microbiol. 2018; 75(1): 11-19.
35. Farha AK. Yang QQ. Gowoon K. Hua-Bin Li . Fan Zhu. Hong-Yan Liu. Ren-You Gan. Corke H. Tannins as an alternative to antibiotics. Food Bioscience. 2020; 38: 100751. https://doi.org/10.1016/j.fbio.2020.100751
36. Ke S. Recent Progress of Novel Steroid Derivatives and Their Potential Biological Properties. Mini-Rev. Med. Chem. 2018; 18: 745–775.
37. Vollaro A. Esposito A. Antonaki E. Iula VD. D’Alonzo D. Guaragna A. and De Gregorio E.Steroid Derivatives as Potential Antimicrobial Agents against Staphylococcus aureus Planktonic Cells, Microorganisms. 2020; 8 (4): 468. doi: 10.3390/microorganisms8040468.