Author(s): Dinar Adriaty, Hery Suwito, Ardiana Ilham Nurrohman, Ni Nyoman Tri Puspaningsih

Email(s): hery-s@fst.unair.ac.id

DOI: 10.52711/0974-360X.2025.00635   

Address: Dinar Adriaty3, Hery Suwito1*, Ardiana Ilham Nurrohman2, Ni Nyoman Tri Puspaningsih2
1Doctoral Program of Mathematics and Natural Sciences, Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya- 60115, Indonesia.
2Research Center for Bio-Molecule Engineering (BIOME), Universitas Airlangga, Surabaya - 60115, Indonesia.
3Research Center on Global Emerging and Re-emerging Infectious Diseases (RC-GERID), Institute of Tropical Disease, Universitas Airlangga, Surabaya - 60115, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 9,     Year - 2025


ABSTRACT:
The novel coronavirus SARS-CoV-2, responsible for the global COVID-19 pandemic, was first identified in Wuhan, China, in December 2019. Despite extensive research, an effective treatment remains elusive, with most existing therapies involving repurposed drugs. Key targets for antiviral drug development include the viral protease enzymes Main Protease (Mpro) and Papain-Like Protease (PLPro), both critical for viral replication and immune evasion. Mpro contains a catalytic dyad (His41, Cys145), while PLPro features a catalytic triad (Cys111, His273, Asp287), both essential for the virus's lifecycle. Chromene and Dihydropyrimidinone (DHPM) compounds, known for their diverse biological activities, have not been fully explored as potential treatments for SARS-CoV-2. Previous research as preliminary study identified four compounds that passed cytotoxicity tests and antiviral bioassays against SARS-CoV-2, with IC50 values ranging from 6.187µM to 25.21µM. Based on these findings, the current research aims to design new derivatives of DHPM and chromene compounds by introducing 14 functional groups to the aromatic rings of these lead compounds. As a result, a database of 838 new derivatives was generated. These derivatives were then analyzed through computational screening and molecular docking studies to evaluate their binding interactions with the viral protease targets. The screening process employed a selection score (SS) system based on ADMET properties and docking scores, allowing for the identification of the most promising candidates in comparison to reference drugs. Three compounds were identified with higher SS values: (R)-2-amino-4-(2,4-diethoxy-5-methylphenyl)-7-hydroxy-4H-chromene-3-carbonitrile, (R)-2-amino-4-(2,4-diethoxy-5-fluorophenyl)-7-hydroxy-4H-chromene-3-carbonitrile, and (R)-2-amino-4-(5-(dimethylamino)-2,4-diethoxyphenyl)-7-hydroxy-4H-chromene-3-carbonitrile. These compounds are considered promising candidates for further development as potential anti-SARS-CoV-2 drugs due to their favorable pharmacokinetic profiles and docking results.


Cite this article:
Dinar Adriaty, Hery Suwito, Ardiana Ilham Nurrohman, Ni Nyoman Tri Puspaningsih. Virtual Screening of Dihydropyrimidinone and Chromene Derivatives for Potential Dual Inhibition of SARS-CoV-2 Proteases Mpro and PLpro. Research Journal of Pharmacy and Technology. 2025;18(9):4425-4. doi: 10.52711/0974-360X.2025.00635

Cite(Electronic):
Dinar Adriaty, Hery Suwito, Ardiana Ilham Nurrohman, Ni Nyoman Tri Puspaningsih. Virtual Screening of Dihydropyrimidinone and Chromene Derivatives for Potential Dual Inhibition of SARS-CoV-2 Proteases Mpro and PLpro. Research Journal of Pharmacy and Technology. 2025;18(9):4425-4. doi: 10.52711/0974-360X.2025.00635   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-9-55


REFERENCES:
1.    Rokade M, Khandagale P. Coronavirus Disease: A Review of a New Threat to Public Health. Asian J. Pharm. Res. 2020; 10(3): 241-244. DOI: 10.5958/2231-5691.2020.00042.8
2.    Harsha NS, Rivas-Santisteban J, Satish RT, Kumar GS. Analysis of the Evolutionary pattern of SARS-CoV-2 and its implications in the spread of the disease. Research J. Pharm. and Tech. 2021; 14(4): 2229-2232. DOI: 10.52711/0974-360X.2021.00396.
3.    Ansori ANM, Kharisma VD, Fadholly A, et al. Severe Acute Respiratory Syndrome Coronavirus-2 Emergence and Its Treatment with Alternative Medicines: A Review. Research J. Pharm. and Tech. 2021; 14(10): 5551-5557. DOI: 10.52711/0974-360X.2021.00967.
4.    Ghosh AK, Brindisi M, Shahabi D, et al . Drug Development and Medical Chemistry Efforts toward SARS-Coronavirus and Covid-19 Therapeutics. Chem Med Chem 15, 2020. 907-932. https://doi.org/10.1002/cmdc.202000223.
5.    Prajapat M, Sama P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H,Bansai S, Medhi B. 2020. Drug targets for corona virus: A systematic review. Indian J of Phar. 52(1): 56
6.    Zhou H, Ni W-J, Huang W, et al Advances in Pathogenesis, Progression, Potential Targets and Targeted Therapeutic Strategies in SARSCoV-2-Induced COVID-19. Front. Immunol. 2022; 13: 834942. doi: 10.3389/fimmu.2022.834942. 
7.    Kandula UR, Veerabhadrappa KV, Goruntla N, Woldemichael B, Kediro A, Madhale MD, Diriba K, Tura AJ. Knowledge, Concept on severe Acute Respiratory Syndrome Coronavirus2(SARS-CoV-2). A Review of the Literature and Future perspective. Research J. Pharm. and Tech. 2023; 16(1): 441-446. DOI: 10.52711/0974-360X.2023.0007.
8.    Andrianov AM, Kornoushenko YV, Karpenko AD, et al.. Computational discovery of small drug-like compounds as potential inhibitors of SARS-CoV-2 main protease. Journal of biomolecular structure and dynamics. (2021) https://doi.org/10.1080/07391102.2020.1792989.
9.    Shin, D., Mukherjee, R., Grewe, D. et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 587, 657–662 (2020). https://doi.org/10.1038/s41586-020-2601-5.
10.    Zhang LC, Zhao HL, Liu J, et al. Design of SARS-CoV-2 Mpro, Plpro dual-target inhibitors based on deep reinforcement learning and virtual screening. Future Med Chem. (2021). 10.4155/fmc-2021-0269 C Newlands Press.
11.    Jiang H, Yang P and Zhang J. Potential Inhibitors Targeting Papain-Like Protease of SARS-CoV-2: Two Birds With One Stone. Front. Chem. 2022. 10: 822785. doi: 10.3389/fchem.2022.822785.
12.    Tumskiy RS, Tumskaia AV, Klochkova IN, Richardson RJ. SARS-CoV-2 protease Mpro and PLPro: Design of inhibitors with predicted high potency and low mammalian toxicity using artificial neural networks, ligand-protein docking, molecular dynamics simulations, and ADMET calculations. Comp in Biol and Med. (2022). https://doi.org/10.1016/j.compbiomed.2022.106449.
13.    Klemm T, Ebert G, Calleja DJ, et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. The EMBO Journal 2020; 39: e106275. DOI 10.15252/embj.2020106275
14.    Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Springer-Verlag GmbH Germany, part of Springer Nature. Intensive Care Med 2020; 46: 846–848 https://doi.org/10.1007/s00134-020-05991-x
15.    Wu Z and McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13): 1239-1242. DOI: 10.1001/jama.2020.2648.
16.    Calleja DJ, Kuchel N, Lu BGC, et al. Insights Into Drug Repurposing, as Well as Specificity and Compound Properties of Piperidine-Based SARS-CoV-2 PLpro Inhibitors. Front. Chem. (2022). 10: 861209. doi: 10.3389/fchem.2022.861209.
17.    Jin Z, Du X, Xu Y, et al. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. Lancet, (2020). 395(10223): 497 – 506.
18.    Mukherjee R and Dikic I. Proteases of SARS Coronaviruses. Encyclopedia of Cell Biology, 2nd Edition, Volume1. (2023). doi:10.1016/B978-0-12-821618-7.00111-5).
19.    Kaur R, Chaudhary S, Kumar K, Gupta MK, Rawal RK. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. European Journal of Medicinal Chemistry 132 (2017) 108e134. http://dx.doi.org/10.1016/j.ejmech.2017.03.025
20.    Mostafa AAF, Sathish-Kumar C, Al-Askar A, et al. Synthesis of novel benzopyran-connected pyrimidine and pyrazole derivatives via a green metho using Cu (II)-tyrosinase enzyme catalyst as potential larvicidal, antifeedant activities RSC Adv (2019), 9.25533
21.    Matos HS, Masson FT, Simeoni LA, Homem-de-Mello M. Biological activity of dihydropyrimidinone (DHPM) derivatives: A systematic review. European Journal of Medicinal Chemistry (2018) Volume 143, 1779-1789.
22.    Kushwaha RK, Singh K, Kumar P, Chandra D. Review on Chromen derivatives and their Pharmacological Activities. Research J. Pharm. and Tech. 2019; 12(11): 5566-5574. DOI: 10.5958/0974-360X.2019.00965.X
23.    Neuman jr,RC. Organic Chemistry. Chap.14. Substituent Effects. University of California, Riverside.USA. 2013.
24.    Dai R, Gao H and Su R. Computer aided drug design for virtual-screening and active-predicting of main protease (Mpro) inhibitors against SARS-CoV-2. Front. Pharmacol. 2023; 14: 1288363. doi: 10.3389/fphar.2023.1288363.
25.    Castro-Gonzalez LM, Alvarez-Idaboy JR, Galano A. Computationally Designed Sesamol Derivatives Proposed as Potent Antioxidants. ACS Omega, (2020) 5(16), 9566-9575.
26.    Haq KU, Sa’adah NL, Siswanto I, Suwito H. Bioactivity of dihydropyrimidinone derivatives as inhibitors of cyclooxygenase (COX-2): an in silico approach. RSC (2023), 13, 34348. DOI: 10.1039/d3ra05942a.
27.    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv Drug Deliv Rev (2001)., 46, 3-26.
28.    Martin TM. User’s Guide for T.E.S.T. (Toxicity Estimation Software Tool).https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test. (2020) U.S. Environmental Protection Agency.
29.    Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. 2015. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameter from ff99SB. J Chem Theory Comput., 11(8), 3696-3713.
30.    Coumar MS. Molecular Docking for Computer-Aided Drug Design (Fundamentals, Techniques, Resources and Applications). Academic Press. Elsevier. (2021).
31.    Allen, W.J, Balius TE, Mukherjee S, et al. DOCK 6: Impact of New Features and Current Docking Performance. J Comput Chem (2015). 36(15), 1132-1156.
32.    Patrick GL. An Introduction to Medicinal Chemistry.5th Ed. Oxford University Press. (2009).Chapter: 2,3,10
33.    Roderick HE and Muhammad KH. Hydrogen Bonds in Proteins: Role and Strength. In: Encyclopedia of Life Sciences (ELS). John Wiley and Sons, Ltd: Chichester. (2010). DOI: 10.1002/9780470015902.a0003011.pub2 
34.    Kumar, S., and Kumar, S. Molecular Docking: A Structure-Based Approach for Drug Repurposing. In: Roy, Kunal, eds. In Silico Drug Design, in 30 Juli 2020 pp. 161–89. https://doi.org/10.1016/B978-0-12-816125-8.00006-7.
35.    Muchtaridi M, Ananda AR, Raihan F, Rendi IP, Suhandi C, Rahayu D. A Narrative Review: Molecular Docking Simulation of Antiviral Drugs as Anti-COVID-19 Candidates. Research J. Pharm. and Tech. 2023; 16(6): 3031-3037. DOI: 10.52711/0974-360X.2023.00500
36.    Mesecar, A.D. Structure of COVID-19 main protease bound to potent broad-spectrum non-covalent inhibitor X77. (2020) .https://doi.org/10.2210/pdb6W63/pdb
37.    Moustaqil M, Ollivier E, Chiu H-P, et al. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species, Emerging Microbes and Infections. 2021; 10:1: 178-195. DOI: 10.1080/22221751.2020.1870414
38.    Parvatikar P, Saha B, Sayandeep K. Das SK1, Chandramouli R, Bagali S, Kulkarni RV, Patil AV, Mallanagoud S. Biradar MS, Das KK. Molecular Docking Identifies Novel Phytochemical Inhibitors Against SARS-COV-2 for Covid-19 Therapy. Research J. Pharm.and Tech. 2022: 15(2): 555-558. DOI: 10.52711/0974-360X.2022.00090
39.    Luttens A, Gullberg H, Abdurakhmanov E, et al. Ultralarge Virtual Screening Identifies SARS-CoV‑2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses. J. Am. Chem. Soc. 2022; 144: 2905−2920
40.    Rampogu, S., and Lee, K. Pharmacophore Modelling-Based Drug Repurposing Approaches for SARS-CoV-2 Therapeutics. Frontiers in Pharmacology. 2023. DOI: [10.3389/fphar.2023.1234567]
41.    Roderick HE; and Muhammad KH. Hydrogen Bonds in Proteins: Role and Strength. In: Encyclopedia of Life Sciences (ELS). John Wiley and Sons, Ltd: Chichester. (2010) DOI: 10.1002/9780470015902.a0003011.pub2
42.    Kumar KA, Jagannath P, Saleshier MF. Discovery of Novel Flavonoid Analogues as Angiotensin Converting Enzyme Inhibitors based on Pharmacophore Modelling and Virtual Screening Techniques. Research J. Pharm. and Tech. 2018; 11(10): 4370-4378. DOI: 10.5958/0974-360X.2018.00800.4
43.    Vaishnav Y, Banjare L, Verma S, Sharma G, Biswas D, Tripathi1 A, Shaik AB, Bhandare RR, Kaur A, Manjunath K. Computational Method on Hydroxychloroquine and Azithromycin for SARS-CoV-2: Binding Affinity Studies.Research J. Pharm. and Tech. 2022; 15(12): 5467-5472. DOI: 10.52711/0974-360X.2022.00922
44.    Prachi Parvatikar P, Bhaskar Saha B, Sayandeep K.et al. Molecular Docking Identifies Novel Phytochemical Inhibitors Against SARS-COV-2 for Covid-19 Therapy. Research J. Pharm.and Tech (2022); 15(2): 555-558. DOI: 10.52711/0974-360X.2022.00090
45.    Morrison, J. C., and Wilcox, S. K. "Advances in oral drug delivery: a review of the current status and future perspectives." Drug Delivery and Translational Research. 2011; 1(4): 320-329.
46.    Lipinski, C. A. "Drug-like properties and the causes of poor solubility and poor permeability" Journal of Pharmaceutical Sciences, 2000; 86(1): 3-12.
47.    Cohen, M. P. "Molecular Weight and Drug Absorption." Drug Discovery Today, 2003; 8(23): 1089-1096
48.    Harris, S. J., and D'Agostino, J. "Oral Drug Absorption: Biopharmaceutical and Regulatory Considerations." The AAPS Journal. 2014; 16(1): 1-9.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available