Author(s):
Surendra Vada, Sukanya Paul, Radami War, Uday Raj Sharma, Nageena Taj, Haribabu T, Suresh Janadri, Ranjith Muniswamy, Gayathri S V, Jyotsna S K, Manjunatha M.
Email(s):
surendrav@acharya.ac.in
DOI:
10.52711/0974-360X.2025.00544
Address:
Surendra Vada*, Sukanya Paul, Radami War, Uday Raj Sharma, Nageena Taj, Haribabu T, Suresh Janadri, Ranjith Muniswamy, Gayathri S V, Jyotsna S K, Manjunatha M.
Department of Pharmacology, Acharya and BM Reddy College of Pharmacy, Soldevanahalli, Bangalore.
*Corresponding Author
Published In:
Volume - 18,
Issue - 8,
Year - 2025
ABSTRACT:
Epilepsy is a neurological disorder characterized by recurring spontaneous epileptic seizures. The present study was intended to establish combination of Zonisamide and a-tocopherol in Pentylenetetrazol (PTZ) induced seizures by using Zebra fish as alternative model. In PTZ induced model and T-maze test the fish were administered with Zonisamide 10mg/400 ml and a-tocopherol 20mg/400ml combination before being subjected to behavioral activity. The antieprleptic behavioural screening against PTZ induced seizures and cognitive dysfunction was determined using a T-maze test, accompanied by neurotransmitter estimation and antioxidant analysis. All the results were found to be significant. Zonisamide 10 mg/400 ml and a-tocopherol 20mg/400ml combination increased the locomotion activity. Zonisamide and a tocopherol treated group displayed memory impairments similar to PTZ group, taking a high/long time to reach the deepest chamber and spending more time in the incorrect arm. AEDs were discovered to modulate neurotransmitter levels, particularly GABA, in zebrafish brains. Biochemical parameters of various enzymes showed a favorable outcome with Zonisamide at concentrations of 10mg/400mL and a-tocopherol 20 mg/400 mL. Enzymes like SOD and Catalase were found to be significantly abundant in the brain whereas cortisol and MDA level was significantly reduced. Based on findings, we can conclude that the combination of zonisamide and a-tocopherol protects zebrafish from PTZ induced seizures behavioural and biochemical changes. Combination of Behavioral and biochemical information, makes this model a useful tool for future research and discovery of newer and safer AEDs.
Cite this article:
Surendra Vada, Sukanya Paul, Radami War, Uday Raj Sharma, Nageena Taj, Haribabu T, Suresh Janadri, Ranjith Muniswamy, Gayathri S V, Jyotsna S K, Manjunatha M.. Combination of Zonisamide and α-Tocopherol in Pentylenetetrazol Induced Seizures using Zebra fish as Alternative Model. Research Journal Pharmacy and Technology. 2025;18(8):3777-4. doi: 10.52711/0974-360X.2025.00544
Cite(Electronic):
Surendra Vada, Sukanya Paul, Radami War, Uday Raj Sharma, Nageena Taj, Haribabu T, Suresh Janadri, Ranjith Muniswamy, Gayathri S V, Jyotsna S K, Manjunatha M.. Combination of Zonisamide and α-Tocopherol in Pentylenetetrazol Induced Seizures using Zebra fish as Alternative Model. Research Journal Pharmacy and Technology. 2025;18(8):3777-4. doi: 10.52711/0974-360X.2025.00544 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-8-47
REFERENCES:
1. Zashikhina A. Hagglof B. Health-related quality of life in adolescents with chronic physical illness in northern Russia: a cross-sectional study. Health Qual Life Outcomes. 2014; 12(1): 1-8. doi.org/10.1186/1477-7525-12-12.
2. Loscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011; 20(5): 359-68. doi.org/10.1016/j.seizure.2011.01.003
3. Baraban SC. Taylor MR. Castro PA et al. Pentylenetetrazole induced changes in zebrafish behavior, neural activity and c-fos expression. Neurosci. 2005; 131(3): 759-68. doi.org/10.1016/j.neuroscience.2004.11.031
4. Czapinski P. Blaszczyk B. Czuczwar SJ. Mechanisms of action of antiepileptic drugs. Current Topics in Medicinal Chemistry. 2005; 5(1): 3-14. doi.org/10.2174/1568026053386962
5. Ozawa S. Kamiya H. Tsuzuki K. Glutamate receptors in the mammalian central nervous system. Progress in neurobiology. 1998; 54(5): 581-618. doi.org/10.1016/s0301-0082(97)00085-3
6. Masuda Y. Ishizaki M. Shimizu M. Zonisamide: pharmacology and clinical efficacy in epilepsy. CNS Drug Reviews. 1998; 4(4): 341-60. doi.org/10.1111/j.1527-3458.1998.tb00075.x
7. Minato H. Kikuta C. Fujitani B. Masuda Y. Protective effect of zonisamide, an antiepileptic drug, against transient focal cerebral ischemia with middle cerebral artery occlusion‐reperfusion in rats. Epilepsia. 1997; 38(9): 975-80. doi.org/10.1111/j.1528-1157.1997.tb01479.x
8. Ayyildiz M. Yildirim M. Agar E. The involvement of nitric oxide in the anticonvulsant effects of α-tocopherol on penicillin-induced epileptiform activity in rats. Epilepsy Research. 2007; 73(2): 166-72. doi.org/10.1016/j.eplepsyres.2006.09.007
9. Norton W. Bally-Cuif L. Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci. 2010; 11(1): 1-4. doi.org/10.1186/1471-2202-11-90
10. Jucker M. The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat. Med. 2010; 16(11): 1210-14. doi.org/10.1038/nm.2224
11. Abreu, MS., Koakoski G, Ferreira D. Diazepam and fluoxetine decrease the stress response in zebra fish. PLOS One 2014; 9(7): 103-232. doi.org/10.1371/journal.pone.0103232
12. Desmond D, Kyzar E, Gaikwad S, Green J, Riehl R, Roth A, Stewart AM, Kalueff AV. Assessing epilepsy-related behavioral phenotypes in adult zebrafish. In Zebrafish protocols for neurobehavioral research. Humana Press. 2012; 11(7): 313-22. doi.org/10.1007/978-1-61779-597-8_24
13. Avdesh A, Martin Iverson MT, Mondal A, Chen M, Verdile G, Martins RN. Natural colour preference in the zebrafish (Danio rerio). Proc Meas Behav 2010; 12(9): 155-7.
14. Aleström P, D’Angelo L, Midtlyng PJ, Schorderet DF, Schulte-Merker S, Sohm F, Warner S. Zebrafish: Housing and husbandry recommendations. Laboratory Animals 2020; 54(3): 213-24. doi.org/10.1177/0023677219869037
15. Biodegradability R. OECD Guideline for testing of chemicals. OECD 1992;71(1): 1-3.
16. Bannister JV, Calabrese L. Assays for superoxide dismutase. Methods Biochem Anal 2017; 32(9): 279-312. doi.org/10.1002/9780470110539.ch5
17. Mussulini BH, Leite CE, Zenki KC, Moro L, Baggio S et al. Seizures induced by pentylenetetrazole in the adult zebrafish: a detailed behavioral characterization. PloS one 2013; 8(1): 545-55. doi.org/10.1371/journal.pone.0054515
18. Braida D, Ponzoni L, Martucci R, Sparatore F, Gotti C, Sala M. Role of neuronal nicotinic acetylcholine receptors (nAChRs) on learning and memory in zebrafish. Psychopharmacol 2014; 231(9): 1975-85. doi.org/10.1007/s00213-013-3340-1
19. Mezzomo NJ, Fontana BD, Muller TE. Taurine modulates the stress response in Zebrafish. Horm Behav 201; 109(1): 44-52. doi.org/10.1016/j.yhbeh.2019.02.006
20. Rahman H, Eswaraiah M. Simple spectroscopic methods for estimating brain neurotransmitters, antioxidant enzymes of laboratory animals like mice. a review. Pharmatutor Art 2008; 1244: (18): 1-2.
21. Yeh CM, Glöck M, Ryu S. An optimized whole-body cortisol quantification method for assessing stress levels in larval zebrafish. PloS one 2013; 8(11): 794-6. doi.org/10.1371/journal.pone.0079406
22. Aebi H. Catalase in vitro Methods Enzymol, 1984; 105(14): 121–6. doi.org/10.1016/s0076-6879(84)05016-3
23. Del Rio D, Stewart AJ, Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition Metabolism and Cardiovascular Diseases 2005; 15(4): 316-28. doi.org/10.1016/j.numecd.2005.05.003
24. Giovagnoli AR, Franceschetti S, Reati F, Parente A, Maccagnano C, Villani F, Spreafico R. Theory of mind in frontal and temporal lobe epilepsy: cognitive and neural aspects. Epilepsia 2011; 52(11): 1995-2002. doi.org/10.1111/j.1528-1167.2011.03215.x
25. White HS, Smith MD, Wilcox KS. Mechanisms of action of antiepileptic drugs. International Review of Neurobiology 2007; 81(13): 85-110. doi.org/10.1016/s0074-7742(06)81006-8
26. Vingerhoets G. Cognitive effects of seizures. Seizure 2006; 15(4): 221-6. https://doi.org/10.1016/j.seizure.2006.02.012
27. Manford M. Recent advances in epilepsy. Journal of Neurology 2017; 264(8): 1811-24. doi.org/10.1007/s00415-017-8394-2
28. Butterfield DA, Boyd-Kimball D. The critical role of methionine 35 in Epilepsy's amyloid β- peptide (1–42)-induced oxidative stress and neurotoxicity. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2005; 1703(2): 149-56. doi.org/10.1016/j.bbapap.2004.10.014