Author(s):
Chandravadivelu Gopi, Magharla Dasaratha Dhanaraju, Menda Abel, Koruprolu Bhavana, Madem Jeevana Jyothi, Mallampalli Suvani, Mathalla Bharathi
Email(s):
gopi@giet.ac.in
DOI:
10.52711/0974-360X.2025.00525
Address:
Chandravadivelu Gopi1, Magharla Dasaratha Dhanaraju2, Menda Abel1, Koruprolu Bhavana1, Madem Jeevana Jyothi1, Mallampalli Suvani1, Mathalla Bharathi1
1Department of Pharmaceutical Chemistry, GIET School of Pharmacy, Rajamahendravaram - 533296, India.
2Research Lab, GIET School of Pharmacy, Rajamahendravaram - 533296, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 8,
Year - 2025
ABSTRACT:
The chief purpose of this study was to estimate the microbicidal and anti-inflammatory properties of novel mannich base analogues. These analogues were synthesised by condensation reaction between the active hydrogen donating compounds, guanidine and different aldehydes. These analogues were characterized by FT-IR, 13C-NMR, 1H-NMR and Mass spectroscopy. Later the estimation of biological activities of these analogues was performed on anti-microbial and anti-inflammatory effects by using disc diffusion, insilico docking method, inhibition of protein denatured and membrane stabilizing activity methods. Each compound was shown admirable anti-microbial activities against E. coli, B. subtilis, A. flavus and A. niger. The anti-inflammatory activity result reveals an excellent effect on inhibition of protein denatured and RBC haemolysis was observed. The results obtained are firmly similar to insilico study results. These values were close to the reference drugs.
Cite this article:
Chandravadivelu Gopi, Magharla Dasaratha Dhanaraju, Menda Abel, Koruprolu Bhavana, Madem Jeevana Jyothi, Mallampalli Suvani, Mathalla Bharathi. Design, Synthesis, Characterization and Antimicrobial, Anti-Inflammatory Activities of Novel Mannich Base Derivatives. Research Journal Pharmacy and Technology. 2025;18(8):3648-4. doi: 10.52711/0974-360X.2025.00525
Cite(Electronic):
Chandravadivelu Gopi, Magharla Dasaratha Dhanaraju, Menda Abel, Koruprolu Bhavana, Madem Jeevana Jyothi, Mallampalli Suvani, Mathalla Bharathi. Design, Synthesis, Characterization and Antimicrobial, Anti-Inflammatory Activities of Novel Mannich Base Derivatives. Research Journal Pharmacy and Technology. 2025;18(8):3648-4. doi: 10.52711/0974-360X.2025.00525 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-8-28
REFERENCES:
1. Kamala G, Srinivasan N, Ravi Shankar K, Suresh R. Synthesis, Characterization and Antimicrobial Evaluation of N-Mannich Bases of (2-Substituted Phenyl) Benzimidazole Derivatives. Asian J. Pharm. Res. 2018; 8(2): 87-93. http://dx.doi.org/10.5958/2231-5691.2018.00015.1
2. Muheyuddeen G, Rayini SH, Yadav P, Gupta SK. In vivo Analgesics and in vitro Antioxidants Activity of Newly Synthesized Mannich Bases of Lawsone. Asian J. Pharm Res. 2023; 13(1): 11-17. http://dx.doi.org/10.52711/2231-5691.2023.00002
3. Bele DS, Singhvi I. Synthesis and Antimicrobial Activity of Some Mannich Bases of 6-Substituted-2-Aminobenzothiazole. Asian J. Research Chem. 2009; 2(3): 246-249.
4. Senthilkumar N, Jayalakshmi B, Jose J, Sumathi K. Synthesis and biological evaluation of new S-Mannich bases of 3-Methyl-4-Phenyl-3,4,5,6,7,8, hexahydroquinazoline-2(1h)-thione. Asian J. Research Chem. 2011; 4(10): 1573-1577.
5. Girija K, Seethalakshmi P, Hemalatha K, Arumugam N. Synthesis and antimicrobial activity of some novel Mannich base substituted pyrazolone derivatives. Research J. Pharm. and Tech. 2014; 7(4): 460-462.
6. Aryati WD, Tifani AZ, Putri SK, Harahap MFD, Norman E. Hayun R. Bis-Mannich Base derivatives of Curcumin Pyrazole: Synthesis and its Anti-inflammatory Study In-vitro and In-Silico. Research J. Pharm. and Tech. 2024; 17(4): 1537-1543. http://dx.doi.org/10.52711/0974-360X.2024.00243
7. Avci A, Tasci H, Kandemir U, Can OD, Gokhan-Kelekci N, Tozkoparan B. Synthesis, characterization, and in vivo pharmacological evaluation of novel mannich bases derivatives from 1,2,4-triazole containing a naproxen moiety. Bioorg Chem. 2020; 100:103892. http://dx.doi.org/10.1016/j.bioorg.2020.103892
8. Verma N, Awasthi S, Jain V. Synthesis of N-Mannich Bases of some Substituted Carbazoles. RJST. 2022; 14(4):208-2. http://dx.doi.org/10.52711/2349-2988.2022.00034
9. Verma N, Awasthi S, Jain V. Synthesis of N-Mannich Bases of some Substituted Carbazoles. Research J. Pharm. and Tech. 2022; 14(4): 208-212. https://doi.org/10.52711/2349-2988.2022.00034.
10. Gopi C, Dhanaraju MD. Synthesis, spectroscopy characterization and biological activities of some novel 1-(3-(N,N-dimethylamino)-1-(5-. 2020;143:104581.substituted thiophene-2-yl) propylidene semicarbazone Mannich base derivatives. Beni-Suef Univ J Basic Appl Sci. 2018;7: 291–298. https://doi.org/10.1016/j.bjbas.2018.02.004
11. Arathi KN, Sindhu TJ, Vishnu MV, Basith MA, Anitha SV, Roy A, Arundhathi T, George A, Asish S. Synthesis, Molecular Docking and Characterization of Pyrazole N-Mannich Base Derivatives as Antimicrobial Agents. Research J. Pharm. and Tech. 2023; 16(3):1047-2. https://doi.org/ 10.52711/0974-360X.2023.00175
12. Alam F. Synthesis and Biological Evaluation of Some Pyrazole-based Mannich Bases. Research J. Pharm. and Tech. 2019; 12(9): 4225-4230. https://doi.org/10.5958/0974-360X.2019.00726.1
13. Joshi S, Khosla N, Tiwari P. In vitro study of some medicinally important mannich bases derived from antitubercular agent. Bioorg Med Chem. 2004;12(3):571-576. https://doi.org/10.1016/j.bmc.2003.11.001
14. Rubat C, Coudert P, Albuisson E, Bastide J, Couquelet J, Tranche P. Synthesis of mannich bases of arylidenepyridazinones as analgesic agents. J Pharm Sci. 1992; 81(11):1084-1087. https://doi.org/10.1002/jps.2600811108
15. Sushil R. Mathapati, Vikas B. Suryawanshi,Abhay S. Bondge,Jairaj K. Dawale. Synthesis of Some New N-Mannich Bases Derivatives of Phenytoin. Asian J. Research Chem. 2018; 11(2): 236-240. Doi: 10.5958/0974-4150.2018.00044.5
16. Jinky G, Dipak C, Mukesh KK, Mithun R. Synthesis and antimalarial activity evaluation of some mannich bases of tetraoxane-phenol conjugate. IJPER. 2016; 50(4): 591-596. https://doi.org/10.5530/ijper.50.4.11
17. Nagrik DM, Shelke US. Synthesis of N-mannich bases from 3,4-dihydropyrimidin-2(1H)-ones by using nanostructured cobalt chloride doped polyaniline composite as catalyst (PANI-Co). J Phys. 2020: 1644:012018. https://doi.org/10.1088/1742-6596/1644/1/012018
18. Girija K, Karthika S, Mathew N. Synthesis and Anti-Microbial Activity of Some Novel Mannich Base Aryl Imidazole Derivatives. Research J. Pharm. and Tech. 2014; 7(9):1025-1028.
19. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78:119-146. https://doi.org/10.1146/annurev.biochem.78.082907.145923
20. Kulkarni AA, Wankhede SB, Dhawale ND, Yadav PB, Deore VV, Ganjari ID. Synthesis, characterization and biological behaviour of some schiff’s and mannich base derivatives of lamotrigine. Arab J Chem. 2017; 10: S184-S189. https://doi.org/10.1016/j.arabjc.2012.07.020
21. Fekadu M, Zeleke D, Abdi B, Guttula A, Eswaramoorthy R, Melaku Y. Synthesis, in silico molecular docking analysis, pharmacokinetic properties and evaluation of antibacterial and antioxidant activities of fluoroquinolines. BMC Chem. 2022; 16(1): PMC8759279. https://doi.org/10.1186/s13065-022-00795-0
22. Joshi S, Bilgaiyan P, Pathak A. Synthesis, spectroscopic characterization and antibacterial screening of novel mannich bases of Ganciclovir. Arab J Chem. 2017; 10: S1180-S1187. https://doi.org/10.1016/j.arabjc.2013.02.013
23. Arathi KN, Sindhu TJ, Vishnu MV, Basith MA, Anitha SV, Annlisa Roy, Arundhathi T, GeorgeA, Asish S. Synthesis, Molecular docking and characterization of pyrazole N-mannich base derivatives as antimicrobial agents. Research J. Pharm. and Tech. 2023;16(3):1047-1052. https://doi.org/10.52711/0974-360X.2023.00175
24. Pavithra R., Hemalatha K., Girija K. Eco-Friendly Synthesis, Characterization, Docking and Anti-Bacterial activity of Mannich Base Substituted Benzimidazoles. Research J. Pharm. and Tech. 2017; 10(10): 3346-3352. https://doi.org/10.5958/0974-360X.2017.00595.9
25. Awoyinka OA., Balogun IO, Ogunnow AA. Phytochemical screening and in vitro bioactivity of Cnidoscolus aconitifolius (Euphorbiaceae). J Med Plant Res. 2007; 1: 63-95. http://www.academicjournals.org/JMPR
26. Matuschek E, Copsey-Mawer S, Petersson S, Ahman J, Morris TE, Kahlmeter G. The European committee on antimicrobial susceptibility testing disc diffusion susceptibility testing method for frequently isolated anaerobic bacteria. Clin Microbiol Infect. 2023;29: 795.e1-795.e7. https://doi.org/10.1016/j.cmi.2023.01.027
27. Anokwah D, Kwatia A, Amponsah IK, Jibira Y, Harley BK, Ameyaw EO, Obese E, Biney RP, Mensah AY. Evaluation of the anti-inflammatory and antioxidant potential of the stem bark extract and some constituents of Aidia genipiflora (D.C) dandy (rubiaceae). Heliyon. 2022; 8: e10082. https://doi.org/10.1016/j.heliyon.2022.e10082
28. Chandra S, Chatterjee P, Dey P, Bhattacharya S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac J Trop Biomed. 2022; 2(1): S178-S180. https://doi.org/10.1016/S2221-1691(12)60154-3
29. Shenoy S, Shwetha K, Prabhu K, Maradi R, Bairy KL, Shanbhag T. Evaluation of anti-inflammatory activity of Tephrosia purpurea in rats. Asian Pac J Trop Biomed. 2010; 3(3): 193-5. https://doi.org/10.1016/S1995-7645(10)60007-7
30. Vadivu R, Lakshmi KS. In vitro and in vivo anti-inflammatory activity of leaves of Symplocos cochinchinensis (Lour) Moore ssp Laurina. Bangladesh J Pharmacol 2008; 3: 121-124. https://doi.org/10.3329/bjp.v3i2.956