Author(s): Rasha M. Hussein, Heba A. Al Jarajreh, Tala M. Al Matarneh

Email(s): rasha.hussein@pharm.bsu.edu.eg

DOI: 10.52711/0974-360X.2025.00495   

Address: Rasha M. Hussein1*, Heba A. Al Jarajreh2, Tala M. Al Matarneh2,3
1Department of Clinical Pharmacy, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan.
2Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University, Al-Karak, 61710, Jordan.
3Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
*Corresponding Author

Published In:   Volume - 18,      Issue - 7,     Year - 2025


ABSTRACT:
Alzheimer's disease (AD), the most common dementia type, is a progressive neurological condition. Early diagnosis of AD is necessary for effective disease management. However, the currently available diagnostic techniques lack sensitivity and are invasive. MicroRNAs (miRs) are small, non-coding RNAs that have attracted interest in several diseases as non-invasive and stable biomarkers. This review investigates the potential of circulating miRs as biomarkers for amyloid beta (Aß) toxicity, a major hallmark of AD. We extensively searched relevant literature on the Scopus database to highlight key circulating miRs implicated in Aß toxicity and discuss their diagnostic and therapeutic implications. The results suggest that several circulating miRs, such as miR-9, miR-29c, miR-34a, miR-107, miR-125b, miR-135b, miR-138, miR-155, miR-193b, miR-195, miR-200c, miR-206, and miR-384, show potential as noninvasive biomarkers for Aß accumulation and toxicity and hence, AD diagnosis/prognosis. However, further mechanistic studies and validation methods are required.


Cite this article:
Rasha M. Hussein, Heba A. Al Jarajreh, Tala M. Al Matarneh. Circulating Micro RNAs as Diagnostic Signatures for Amyloid Beta Toxicity in Alzheimer's Disease. Research Journal of Pharmacy and Technology. 2025;18(7):3436-3. doi: 10.52711/0974-360X.2025.00495

Cite(Electronic):
Rasha M. Hussein, Heba A. Al Jarajreh, Tala M. Al Matarneh. Circulating Micro RNAs as Diagnostic Signatures for Amyloid Beta Toxicity in Alzheimer's Disease. Research Journal of Pharmacy and Technology. 2025;18(7):3436-3. doi: 10.52711/0974-360X.2025.00495   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-7-75


REFERENCES:
1.    Nandi A, Counts N, Chen S, Seligman B, Tortorice D, Vigo D, et al. Global and regional projections of the economic burden of Alzheimer's disease and related dementias from 2019 to 2050: A value of statistical life approach. E Clinical Medicine. 2022; 51. http://dx.doi.org/10.1016/j.eclinm.2022.101580.
2.    Joe E, Ringman JM. Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ. 2019; 367. http://dx.doi.org/10.1136/bmj.l6217.
3.    Kim DH, Yeo SH, Park JM, Choi JY, Lee TH, Park SY, et al. Genetic markers for diagnosis and pathogenesis of Alzheimer's disease. Gene. 2014; 545(2): 185-193. http://dx.doi.org/10.1016/j.gene.2014.05.031.
4.    Demetrius LA, Driver J. Alzheimer’s as a metabolic disease. Biogerontology. 2013; 14: 641-649. http://dx.doi.org/10.1007/s10522-013-9479-7.
5.    Singh P, Sharma D, Singh A, Gupta H, Singh A. Biological screening to identify hits the Therapeutic Targets of Alzheimer's disease and their role in the pathogenesis. Asian Journal of Research in Chemistry. 2024; 17(1): 45-49. http://dx.doi.org/10.52711/0974-4150.2024.00009.
6.    Anawal L, Chandrashekar V, Shalavadi M, Teli S, Madalageri M, Sadashivanavar V, et al. Neuroprotective Activity of Polyherbal Formulation on Colchicine Induced Alzheimer’s Disease in Rat Model. Asian Journal of Pharmacy and Technology. 2024; 14(3): 199-207. http://dx.doi.org/10.52711/2231-5713.2024.00033.
7.    Kumar K, Singh P, Sharma D, Singh A, Gupta H, Singh A. Prospective current novel drug target for the identification of natural therapeutic targets for alzheimer's disease. Asian Journal of Pharmacy and Technology. 2023; 13(3): 171-174. http://dx.doi.org/10.52711/2231-5713.2023.00030.
8.    Bhati A, Kumar S, Chaudhary R, Kumar S, Saifi A. Design and evaluation of solid lipid microparticles of curcumin for the treatment of alzheimer's disease. Asian Journal of Pharmacy and Technology. 2022; 12(3):193-201. http://dx.doi.org/10.52711/2231-5713.2022.00032.
9.    Patil SV, Patil VK, Patil PA. Review on herbal medicines of alzheimer's disease. Asian Journal of Research in Pharmaceutical Science. 2020;10(3):171-177.http://dx.doi.org/10.5958/2231-5659.2020.00033.8.
10.    Jadhav RP, Kengar MD, Narule OV, Koli VW, Kumbhar SB. A review on Alzheimer's Disease (AD) and its herbal treatment of Alzheimer's Disease. Asian Journal of Research in Pharmaceutical Science. 2019; 9(2): 112-122. http://dx.doi.org/10.5958/2231-5659.2019.00017.1.
11.    Dyuthi H, Rajashekhar U. Alzheimer’s Disease: An Outline of Therapeutic Interventions by different Approaches. Research Journal of Pharmacology and Pharmacodynamics. 2024; 16(3): 226-232. https://doi.org/10.52711/2321-5836.2024.00038.
12.    Bekris LM, Leverenz JB. The biomarker and therapeutic potential of miRNA in Alzheimer's disease. Neurodegener Dis Manag. 2015;5(1):61-74.http://dx.doi.org/10.2217/nmt.14.52.
13.    Herrera-Espejo S, Santos-Zorrozua B, Álvarez-González P, Lopez-Lopez E, Garcia-Orad Á. A Systematic Review of MicroRNA Expression as Biomarker of Late-Onset Alzheimer’s Disease. Mol Neurobiol. 2019; 56(12): 8376-8391. http://dx.doi.org/10.1007/s12035-019-01676-9.
14.    Martinez B, Peplow PV. MicroRNA biomarkers in frontotemporal dementia and to distinguish from Alzheimer's disease and amyotrophic lateral sclerosis. Neural Regeneration Research. 2022; 17(7): 1412-1422. http://dx.doi.org/10.4103/1673-5374.330591.
15.    Sequeira RC, Godad A. An update on microRNA as a potential blood-based biomarker for Alzheimer’s disease. Nucleus (India). 2023. http://dx.doi.org/10.1007/s13237-023-00427-5.
16.    Swarbrick S, Wragg N, Ghosh S, Stolzing A. Systematic Review of miRNA as Biomarkers in Alzheimer’s Disease. Mol Neurobiol. 2019; 56(9): 6156-67. http://dx.doi.org/10.1007/s12035-019-1500-y.
17.    Weldon Furr J, Morales-Scheihing D, Manwani B, Lee J, McCullough LD. Cerebral Amyloid Angiopathy, Alzheimer’s Disease and MicroRNA: miRNA as Diagnostic Biomarkers and Potential Therapeutic Targets. Neuromolecular Med. 2019; 21(4): 369-390. http://dx.doi.org/10.1007/s12017-019-08568-0.
18.    Zhao Y, Jaber V, Alexandrov PN, Vergallo A, Lista S, Hampel H, et al. microRNA-Based Biomarkers in Alzheimer’s Disease (AD). Front Neurosci. 2020; 14. http://dx.doi.org/10.3389/fnins.2020.585432.
19.    Haass C, Kaether C, Thinakaran G, Sisodia S. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med. 2012; 2(5). http://dx.doi.org/10.1101/cshperspect.a006270.
20.    Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromolecular Med. 2010; 12: 1-12. http://dx.doi.org/10.1007/s12017-009-8104-z.
21.    Aanandhi MV, Kumar B, Chowdary PR, Praveen D. A review on the role of presenilin in alzheimer's disease. Research Journal of Pharmacy and Technology. 2018; 11(5): 2149-2151. http://dx.doi.org/10.5958/0974-360X.2018.00397.9 
22.    Pol RP, Naikwade N, Dias R. Targeting Aβ protein in Alzheimer's Disease. Research Journal of Pharmacy and Technology. 2020; 13(2): 1004-1008. http://dx.doi.org/10.5958/0974-360X.2020.00186.9. 
23.    Drolle E, Hane F, Lee B, Leonenko Z. Atomic force microscopy to study molecular mechanisms of amyloid fibril formation and toxicity in Alzheimer’s disease. Drug Metab Rev. 2014; 46(2): 207-223. http://dx.doi.org/10.3109/03602532.2014.882354.
24.    Chandra R. miRNA: Biogenesis, functions, gene targets, prediction tools and databases-A review. Research Journal of Pharmacy and Technology. 2017; 10(6): 1834-1839.http://dx.doi.org/10.5958/0974-360X.2017.00322.5.
25.    Ha M, Kim VN. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology 2014 15:8. 2014; 15(8): 509-24. http://dx.doi.org/10.1038/nrm3838.
26.    Broughton JP, Lovci MT, Huang JL, Yeo GW, Pasquinelli AE. Pairing beyond the Seed Supports MicroRNA Targeting Specificity. Mol Cell. 2016; 64(2): 320-333.http://dx.doi.org/10.1016/j.molcel.2016.09.004.
27.    Makarova JA, Shkurnikov MU, Wicklein D, Lange T, Samatov TR, Turchinovich AA, et al. Intracellular and extracellular microRNA: An update on localization and biological role. Prog Histochem Cytochem. 2016; 51(3-4): 33-49.http://dx.doi.org/10.1016/J.PROGHI.2016.06.001.
28.    Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, et al. Interplay between miRNAs and human diseases. J Cell Physiol. 2018; 233(3): 2007-2018.http://dx.doi.org/10.1002/JCP.25854.
29.    Millan MJ. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: An integrative review. Prog Neurobiol. 2017; 156: 1-68. http://dx.doi.org/10.1016/j.pneurobio.2017.03.004.
30.    Czech B, Hannon GJ. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet. 2011; 12(1): 19-31. http://dx.doi.org/10.1038/nrg2916.
31.    O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne): Frontiers Media S.A.; 2018. http://dx.doi.org/10.3389/fendo.2018.00402.
32.    Femminella GD, Rengo G, Komici K, Iacotucci P, Petraglia L, Pagano G, et al. Autonomic dysfunction in Alzheimer's disease: tools for assessment and review of the literature. J Alzheimers Dis. 2014;42(2):369-77.http://dx.doi.org/10.3233/JAD-140513.
33.    Femminella GD, Ferrara N, Rengo G. The emerging role of microRNAs in Alzheimer's disease. Front Physiol. 2015; 6: 40. http://dx.doi.org/10.3389/fphys.2015.00040.
34.    Baldassarre A, Felli C, Prantera G, Masotti A. Circulating microRNAs and bioinformatics tools to discover novel diagnostic biomarkers of pediatric diseases. Genes. 2017; 8(9): 234. http://dx.doi.org/10.3390/genes8090234.
35.    Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. MicroRNAs in body fluids-the mix of hormones and biomarkers. Nature Reviews Clinical Oncology2011. p. 467-77. http://dx.doi.org/10.1038/nrclinonc.2011.76.
36.    Mo MH, Chen L, Fu Y, Wang W, Fu SW. Cell-free Circulating miRNA Biomarkers in Cancer. J Cancer. 2012; 3(1): 432-448. http://dx.doi.org/10.7150/jca.4919.
37.    Maciotta S, Meregalli M, Torrente Y. The involvement of microRNAs in neurodegenerative diseases. Front Cell Neurosci. 2013; 7: 265.http://dx.doi.org/10.3389/fncel.2013.00265.
38.    Felekkis K, Papaneophytou C. Challenges in using circulating micro-rnas as biomarkers for cardiovascular diseases. Int J Mol Sci: MDPI AG; 2020. http://dx.doi.org/10.3390/ijms21020561.
39.    Ricci C, Marzocchi C, Battistini S. MicroRNAs as biomarkers in amyotrophic lateral sclerosis. Cells: MDPI; 2018. http://dx.doi.org/10.3390/cells7110219.
40.    Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells: NLM (Medline); 2020. http://dx.doi.org/10.3390/cells9020276.
41.    Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, et al. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci: Frontiers Media SA; 2024. https://doi.org/10.3389/fnmol.2024.1386735.
42.    Wang E, Schipper HM, Maes OC, Chertkow HM. MicroRNA Expression in Alzheimer Blood Mononuclear Cells. 2007.
43.    Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013; 14(7). http://dx.doi.org/10.1186/gb-2013-14-7-r78.
44.    Schonrock N, Humphreys DT, Preiss T, Götz J. Target gene repression mediated by miRNAs miR-181c and miR-9 both of which are down-regulated by amyloid-β. J Mol Neurosci. 2012; 46: 324-335. http://dx.doi.org/10.1007/s12031-011-9587-2.
45.    Chang F, Zhang LH, Xu WP, Jing P, Zhan PY. microRNA‑9 attenuates amyloidβ‑induced synaptotoxicity by targeting calcium/calmodulin-dependent protein kinase kinase 2. Mol Med Report. 2014; 9(5): 1917-1922. http://dx.doi.org/10.3892/mmr.2014.2013.
46.    Hong H, Li Y, Su B. Identification of circulating miR-125b as a potential biomarker of Alzheimer’s disease in APP/PS1 transgenic mouse. J Alzheimers Dis. 2017; 59(4): 1449-1458. http://dx.doi.org/10.3233/JAD-170156.
47.    Li S, Yan Y, Jiao Y, Gao Z, Xia Y, Kong L, et al. Neuroprotective effect of osthole on neuron synapses in an Alzheimer’s disease cell model via upregulation of microRNA-9. J Mol Neurosci. 2016; 60: 71-81. http://dx.doi.org/10.1007/s12031-016-0793-9.
48.    Zhao Y, Zhang Y, Zhang L, Dong Y, Ji H, Shen L. The potential markers of circulating microRNAs and long non-coding RNAs in Alzheimer's disease. Aging Dis. 2019; 10(6): 1293. http://dx.doi.org/10.14336/AD.2018.1105.
49.    Kiko T, Nakagawa K, Tsuduki T, Furukawa K, Arai H, Miyazawa T. MicroRNAs in plasma and cerebrospinal fluid as potential markers for Alzheimer's disease. J Alzheimers Dis. 2014; 39(2): 253-259. http://dx.doi.org/10.3233/JAD-130932.
50.    Yang G, Song Y, Zhou X, Deng Y, Liu T, Weng G, et al. MicroRNA-29c targets β-site amyloid precursor protein-cleaving enzyme 1 and has a neuroprotective role in vitro and in vivo. Mol Med Report. 2015; 12(2): 3081-3088. http://dx.doi.org/10.3892/mmr.2015.3728.
51.    Li P, Xu Y, Wang B, Huang J, Li Q. miR-34a-5p and miR-125b-5p attenuate Aβ-induced neurotoxicity through targeting BACE1. J Neurol Sci. 2020; 413: 116793. http://dx.doi.org/10.1016/j.jns.2020.116793.
52.    Liu W, Cai H, Lin M, Zhu L, Gao L, Zhong R, et al. MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1. Exp Cell Res. 2016; 343(2): 248-257. http://dx.doi.org/10.1016/j.yexcr.2016.03.026.
53.    Lugli G, Cohen AM, Bennett DA, Shah RC, Fields CJ, Hernandez AG, et al. Plasma exosomal miRNAs in persons with and without Alzheimer disease: altered expression and prospects for biomarkers. PLoS One. 2015; 10(10): e0139233. http://dx.doi.org/10.1371/journal.pone.0139233.
54.    Wu Y, Xu J, Xu J, Cheng J, Jiao D, Zhou C, et al. Lower serum levels of miR-29c-3p and miR-19b-3p as biomarkers for Alzheimer’s disease. The Tohoku journal of experimental medicine. 2017; 242(2): 129-136.http://dx.doi.org/10.1620/tjem.242.129.
55.    Burgos K, Malenica I, Metpally R, Courtright A, Rakela B, Beach T, et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology. PLoS One. 2014; 9(5): e94839. http://dx.doi.org/10.1371/journal.pone.0094839.
56.    Micheli F, Palermo R, Talora C, Ferretti E, Vacca A, Napolitano M. Regulation of proapoptotic proteins Bak1 and p53 by miR-125b in an experimental model of Alzheimer's disease: Protective role of 17β-estradiol. Neurosci Lett. 2016; 629: 234-40. http://dx.doi.org/10.1016/j.neulet.2016.05.049.
57.    Zhang Y, Xing H, Guo S, Zheng Z, Wang H, Xu D. MicroRNA-135b has a neuroprotective role via targeting of β-site APP-cleaving enzyme 1. Exp Ther Med. 2016; 12(2): 809-14. http://dx.doi.org/10.3892/etm.2016.3366.
58.    Boscher E, Goupil C, Petry S, Keraudren R, Loiselle A, Planel E, et al. MicroRNA-138 overexpression alters Aβ42 levels and behavior in wildtype mice. Front Neurosci. 2021; 14: 591138. http://dx.doi.org/10.3389/fnins.2020.591138.
59.    Lu Y, Tan L, Wang X. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s disease. Neurosci Bull. 2019; 35: 877-888. http://dx.doi.org/10.1007/s12264-019-00361-0.
60.    Guedes JR, Santana I, Cunha C, Duro D, Almeida MR, Cardoso AM, et al. MicroRNA deregulation and chemotaxis and phagocytosis impairment in Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring. 2016;3:7-17.http://dx.doi.org/10.1016/j.dadm.2015.11.004.
61.    Falcao AS, Carvalho LA, Lidonio G, Vaz AR, Lucas SD, Moreira R, et al. Dipeptidyl vinyl sulfone as a novel chemical tool to inhibit HMGB1/NLRP3-inflammasome and inflamma-miRs in Aβ-mediated microglial inflammation. ACS Chem Neurosci. 2017; 8(1): 89-99. http://dx.doi.org/10.1021/acschemneuro.6b00250.
62.    Liu CG, Song J, Zhang YQ, Wang PC. MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer's disease. Mol Med Report. 2014;10(5):2395-2400.http://dx.doi.org/10.3892/mmr.2014.2484.
63.    Cao F, Liu Z, Sun G. Diagnostic value of miR-193a-3p in Alzheimer's disease and miR-193a-3p attenuates amyloid-β induced neurotoxicity by targeting PTEN. Exp Gerontol. 2020;130:110814.http://dx.doi.org/10.1016/j.exger.2019.110814.
64.    Gao Z, Zhang R, Jiang L, Zhou H, Wang Q, Ma Y, et al. Administration of MiR-195 Inhibitor Enhances Memory Function Through Improving Synaptic Degradation and Mitochondrial Dysfunction of the Hippocampal Neurons in SAMP8 Mice. J Alzheimers Dis. 2022;85(4):1495-1509.http://dx.doi.org/10.3233/JAD-215301.
65.    Zhu H-C, Wang L-M, Wang M, Song B, Tan S, Teng J-F, et al. MicroRNA-195 downregulates Alzheimer's disease amyloid-β production by targeting BACE1. Brain Res Bull. 2012;88(6):596-601.http://dx.doi.org/10.1016/j.brainresbull.2012.05.018.
66.    Fu J, Peng L, Tao T, Chen Y, Li Z, Li J. Regulatory roles of the miR-200 family in neurodegenerative diseases. Biomed Pharmacother. 2019;119:109409.http://dx.doi.org/10.1016/j.biopha.2019.109409.
67.    Wu Q, Ye X, Xiong Y, Zhu H, Miao J, Zhang W, et al. The protective role of microRNA-200c in Alzheimer's disease pathologies is induced by beta amyloid-triggered endoplasmic reticulum stress. Front Mol Neurosci. 2016;9:140.http://dx.doi.org/10.3389/fnmol.2016.00140.
68.    Moon J, Lee S-T, Kong IG, Byun J-I, Sunwoo J-S, Shin J-W, et al. Early diagnosis of Alzheimer’s disease from elevated olfactory mucosal miR-206 level. Sci Rep. 2016;6(1):20364.http://dx.doi.org/10.1038/srep20364.
69.    Tian N, Cao Z, Zhang Y. MiR-206 decreases brain-derived neurotrophic factor levels in a transgenic mouse model of Alzheimer’s disease. Neurosci Bull. 2014;30:191-197.http://dx.doi.org/10.1007/s12264-013-1419-7.
70.    Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, et al. miR‐206 regulates brain‐derived neurotrophic factor in Alzheimer disease model. Ann Neurol. 2012;72(2):269-77.http://dx.doi.org/10.1002/ana.23588.
71.    Liu C-G, Wang J-L, Li L, Wang P-C. MicroRNA-384 regulates both amyloid precursor protein and β-secretase expression and is a potential biomarker for Alzheimer's disease. Int J Mol Med. 2014;34(1):160-166.http://dx.doi.org/10.3892/ijmm.2014.1780.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available