Author(s): Sadhana Jaiswal, Deepali Rajwade, Preeti Mehta, Hemant Kumar, Sumit Rajput

Email(s): ddrajwade@gmail.com

DOI: 10.52711/0974-360X.2025.00492   

Address: Sadhana Jaiswal1, Deepali Rajwade1*, Preeti Mehta2, Hemant Kumar3, Sumit Rajput4
1Department of Biotechnology, Govt. Nagarjuna P.G. College of Science, Raipur, C.G., India.
2Department of Microbiology, Govt. Nagarjuna P.G. College of Science, Raipur, C.G., India.
3Department of Biotechnology, O.P. Jindal University, Raigarh, C.G., India.
4Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 7,     Year - 2025


ABSTRACT:
Aging leads to changes in many biological processes and their disruption leads to ailments. Understanding molecular mechanisms underpinning cardiac aging, with a prime focus on the contribution of dysfunctional mitochondria in this process is crucial. Mitochondrial dysfunction has been correlated to multiple cardiac diseases therefore, treating the mitochondria has helped in alleviating/preventing these conditions. It has also been observed that antioxidant moieties scavenge the excess ROS in the mitochondria and have significantly demonstrated a protective effect on mitochondria. The antioxidants however due to their molecular weight and their composition may or may not accumulate inside the cell and mitochondria. Targeting the mitochondria requires special modification and TPP is one such moiety. TPP facilitates the sequestered accumulation of the tagged compound inside mitochondria. Accumulating evidence from several in vitro and in vivo experimental models has proven the efficacy of this approach in ameliorating age-related cardiac impairments. These findings underscore the significance of mitochondrial health in the context of cardiac aging and provide a foundation for the development of targeted interventions aimed at preserving cardiac function during the aging process.


Cite this article:
Sadhana Jaiswal, Deepali Rajwade, Preeti Mehta, Hemant Kumar, Sumit Rajput. Finding Horcruxes of Mitochondrial Dysfunction in Cardiac health and aging and Amelioration through Triphenylphosphonium Conjugates. Research Journal of Pharmacy and Technology. 2025;18(7):3408-8. doi: 10.52711/0974-360X.2025.00492

Cite(Electronic):
Sadhana Jaiswal, Deepali Rajwade, Preeti Mehta, Hemant Kumar, Sumit Rajput. Finding Horcruxes of Mitochondrial Dysfunction in Cardiac health and aging and Amelioration through Triphenylphosphonium Conjugates. Research Journal of Pharmacy and Technology. 2025;18(7):3408-8. doi: 10.52711/0974-360X.2025.00492   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-7-72


8. REFERENCES:
1.    Obas V, Vasan RS. The aging heart. Clin Sci. 2018; 132(13): 1367-1382.doi.org/10.1042/CS20171156
2.    Pramila K, Julius A. In vitro antioxidant effect of green tea polyphenol epigallocatechin-3-Gallate (EGCG) in protecting cardiovascular diseases. Research Journal of Pharmacy and Technology. 2019; 12(3): 1265-7. doi. 10.5958/0974-360X.2019.00211.7
3.    Gayathri V, Sharmila J, Navyatha N, Kalyani P, Grace BS, Balaiah S, Kumar TV, Roy HK. Assessment of Drug Utilization pattern on Cardiovascular patients at a Tertiary Care Hospital in South India. Research Journal of Pharmacy and Technology. 2019; 12(8): 3781-6.doi.10.5958/0974-360X.2019.00647.4
4.    Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017; 135(10): e146-e603. doi.org/10.1161/CIR.0000000000000485
5.    Quan Y, Xin Y, Tian G, Zhou J, Liu X. Mitochondrial ROS-modulated mtDNA: a potential target for cardiac aging. Oxid Med Cell Longev. 2020;2020. doi.org/10.1155/2020/9423593
6.    Picard  M,  Wallace  DC,  Burelle  Y.  The  rise  of  mitochondria  in  medicine.  Mitochondrion.  2016; 30: 105-116. doi.org/10.1016/j.mito.2016.07.003
7.    Chen Q, Huang W, Capanoglu E, Amrouche AT, Lu B. Targeting mitochondrial quality control in muscle aging: Natural dietary products as potential interventions. Food Front. 2023. doi.org/10.1002/fft2.261
8.    Lee YH, Kuk MU, So MK, et al. Targeting mitochondrial oxidative stress as a strategy to treat aging and age-related diseases. Antioxidants. 2023; 12(4): 934. doi.org/10.3390/antiox12040934
9.    Di Fonso A, Pietrangelo L, D’Onofrio L, Michelucci A, Boncompagni S, Protasi F. Ageing Causes Ultrastructural Modification to Calcium Release Units and Mitochondria in Cardiomyocytes. Int J Mol Sci. 2021; 22(16). doi:10.3390/ijms22168364
10.    Yan M, Sun S, Xu K, et al. Cardiac Aging: From Basic Research to Therapeutics. Oxid Med Cell Longev. 2021; 2021: 9570325. doi:10.1155/2021/9570325
11.    Ashford T P, Porter K R. Cytoplasmic components in hepatic cell lysosomes. J Cell Biol. 1962; 12(1): 198-202. doi:10.1083/jcb.12.1.198
12.    Wilson N, Kataura T, Korsgen ME, Sun C, Sarkar S, Korolchuk VI. The autophagy–NAD axis in longevity and disease. Trends Cell Biol. 2023. doi.org/10.1016/j.tcb.2023.02.004
13.    Tabibzadeh S. Role of autophagy in aging: The good, the bad, and the ugly. Aging Cell. 2023; 22(1): e13753. doi.org/10.1111/acel.13753
14.    Sciarretta S, Maejima Y, Zablocki D, Sadoshima J. The Role of Autophagy in the Heart. Annu Rev Physiol. 2018; 80: 1-26. doi:10.1146/annurev-physiol-021317-121427
15.    Bernard M, Yang B, Migneault F, et al. Autophagy drives fibroblast senescence through MTORC2 regulation. Autophagy. 2020; 16(11): 2004-2016. doi.org/10.1080/15548627.2020.1713640
16.    Fernández ÁF, Sebti S, Wei Y, et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature. 2018; 558(7708): 136-140. doi:10.1038/s41586-018-0162-7
17.    Liang W, Moyzis AG, Lampert MA, Diao RY, Najor RH, Gustafsson ÅB. Aging is associated with a decline in Atg9b‐mediated autophagosome formation and appearance of enlarged mitochondria in the heart. Aging Cell. 2020; 19(8): e13187. doi.org/10.1111/acel.13187
18.    Karabiyik C, Frake RA, Park SJ, Pavel M, Rubinsztein DC. Autophagy in ageing and ageing-related neurodegenerative diseases. Ageing Neurodegener Dis. 2021; 1(2). doi: 10.20517/and.2021.05
19.    Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and Mitophagy in Cardiovascular Disease. Circ Res. 2017; 120(11): 1812- 1824. doi:10.1161/CIRCRESAHA.117.311082
20.    Gao G, Chen W, Yan M, et al. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int J Mol Med. 2020; 45(1): 195-209. doi:10.3892/ijmm.2019.4407
21.    Qiu G, Li X, Che X, et al. SIRT1 is a regulator of autophagy: Implications in gastric cancer progression and treatment. FEBS Lett. 2015; 589(16): 2034-2042. doi:10.1016/j.febslet.2015.05.042
22.    Hassanpour M, Cheraghi O, Rahbarghazi R, Nouri M. Autophagy stimulation delayed biological aging and decreased cardiac differentiation in rabbit mesenchymal stem cells. J Cardiovasc Thorac Res. 2021; 13(3): 234-240. doi:10.34172/jcvtr.2021.43
23.    He J, Zhang G, Pang Q, et al. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox- LDL condition. FEBS J. 2017; 284(9): 1324-1337. doi:10.1111/febs.14055
24.    Li S, Li H, Yang D, et al. Excessive Autophagy Activation and Increased Apoptosis Are Associated with Palmitic Acid-Induced Cardiomyocyte Insulin Resistance. J Diabetes Res. 2017; 2017: 2376893. doi:10.1155/2017/2376893
25.    Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017; 168(6): 960-976. doi:10.1016/j.cell.2017.02.004
26.    Sun X, Han F, Lu Q, et al. Empagliflozin Ameliorates Obesity-Related Cardiac Dysfunction by Regulating Sestrin2-Mediated AMPK- mTOR Signaling and Redox Homeostasis in High-Fat Diet-Induced Obese Mice. Diabetes. 2020; 69(6): 1292-1305. doi:10.2337/db19- 0991
27.    Masui K, Harachi M, Cavenee WK, Mischel PS, Shibata N. mTOR complex 2 is an integrator of cancer metabolism and epigenetics. Cancer Lett. 2020; 478: 1-7. doi:10.1016/j.canlet.2020.03.001
28.    He Y, Zuo C, Jia D, et al. Loss of DP1 Aggravates Vascular Remodeling in Pulmonary Arterial Hypertension via mTORC1 Signaling. Am J Respir Crit Care Med. 2020; 201(10): 1263-1276. doi:10.1164/rccm.201911-2137OC
29.    Van Skike CE, Jahrling JB, Olson AB, et al. Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer’s disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol. 2018; 314(4): H693-H703. doi:10.1152/ajpheart.00570.2017
30.    Marín-Aguilar F, Lechuga-Vieco A V, Alcocer-Gómez E, et al. NLRP3 inflammasome suppression improves longevity and prevents cardiac aging in male mice. Aging Cell. 2020; 19(1): e13050. doi:10.1111/acel.13050
31.    Shi J, Surma M, Yang Y, Wei L. Disruption of both ROCK1 and ROCK2 genes in cardiomyocytes promotes autophagy and reduces cardiac fibrosis during aging. FASEB J Off Publ Fed Am Soc Exp Biol. 2019; 33(6): 7348-7362. doi:10.1096/fj.201802510R
32.    Xu S, Ni H, Chen H, Dai Q. The interaction between STAT3 and nAChRα1 interferes with nicotine-induced atherosclerosis via Akt/mTOR signaling cascade. Aging (Albany NY). 2019; 11(19): 8120-8138. doi:10.18632/aging.102296
33.    Guo F-X, Wu Q, Li P, et al. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ. 2019; 26(9): 1670-1687. doi:10.1038/s41418-018-0235-z
34.    Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis. Cell Res. 2014; 24(1): 58-68. doi:10.1038/cr.2013.159
35.    Wessells R, Fitzgerald E, Piazza N, et al. d4eBP acts downstream of both dTOR and dFoxo to modulate cardiac functional aging in Drosophila. Aging Cell. 2009; 8(5): 542-552. doi:10.1111/j.1474-9726.2009.00504.x
36.    Dutta D, Xu J, Kim J-S, Dunn WAJ, Leeuwenburgh C. Upregulated autophagy protects cardiomyocytes from oxidative stress-induced toxicity. Autophagy. 2013; 9(3): 328-344. doi:10.4161/auto.22971
37.    Chang K, Kang P, Liu Y, et al. TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2. Autophagy. 2020; 16(10): 1807-1822. doi:10.1080/15548627.2019.1704117
38.    Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998. doi: 10.1152/physrev.1998.78.2.547
39.    Cosentino F, Francia P, Camici GG, Pelicci PG, Volpe M, Lüscher TF. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol. 2008; 28(4): 622-628. doi.org/10.1161/ATVBAHA.107.156059
40.    Tauffenberger A, Magistretti PJ. Reactive oxygen species: beyond their reactive behavior. Neurochem Res. 2021; 46: 77-87. doi: 10.1007/s11064-020-03208-7
41.    Zhao M-J, Yuan S, Zi H, Gu J-M, Fang C, Zeng X-T. Oxidative stress links aging-associated cardiovascular diseases and prostatic diseases. Oxid Med Cell Longev. 2021; 2021. doi: 10.1155/2021/5896136
42.    Hajam YA, Rani R, Ganie SY, et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells. 2022; 11(3). doi:10.3390/cells11030552
43.    Aon MA, Stanley BA, Sivakumaran V, et al. Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: an experimental-computational study. J Gen Physiol. 2012; 139(6): 479-491. doi:10.1085/jgp.201210772
44.    Valls-Lacalle L, Barba I, Miró-Casas E, Ruiz-Meana M, Rodríguez-Sinovas A, García-Dorado D. Selective Inhibition of Succinate Dehydrogenase in Reperfused Myocardium with Intracoronary Malonate Reduces Infarct Size. Sci Rep. 2018; 8(1): 2442. doi:10.1038/s41598-018-20866-4
45.    Bou-Teen D, Kaludercic N, Weissman D, et al. Mitochondrial ROS and mitochondria-targeted antioxidants in the aged heart. Free Radic Biol Med. 2021; 167: 109-124. doi: 10.1016/j.freeradbiomed.2021.02.043
46.    Rebrin I, Sohal RS. Comparison of thiol redox state of mitochondria and homogenates of various tissues between two strains of mice with different longevities. Exp Gerontol. 2004; 39(10): 1513-1519. doi:10.1016/j.exger.2004.08.014
47.    Kumaran S, Subathra M, Balu M, Panneerselvam C. Age-associated decreased activities of mitochondrial electron transport chain complexes in heart and skeletal muscle: role of L-carnitine. Chem Biol Interact. 2004; 148(1-2): 11-18. doi:10.1016/j.cbi.2003.10.010
48.    Kumaran S, Subathra M, Balu M, Panneerselvam C. Supplementation of L-carnitine improves mitochondrial enzymes in heart and skeletal muscle of aged rats. Exp Aging Res. 2005; 31(1): 55-67. doi:10.1080/03610730590882846
49.    Lyu G, Guan Y, Zhang C, et al. TGF-β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat Commun. 2018; 9(1): 2560. doi:10.1038/s41467-018-04994-z
50.    Dai D-F, Santana LF, Vermulst M, et al. Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging. Circulation. 2009; 119(21): 2789-2797. doi:10.1161/CIRCULATIONAHA.108.822403
51.    Groenendyk J, Sreenivasaiah PK, Kim DH, Agellon LB, Michalak M. Biology of endoplasmic reticulum stress in the heart. Circ Res. 2010; 107(10): 1185-1197. doi: 10.1161/CIRCRESAHA.110.227033
52.    Zhou X, Chen Z, Xiao L, et al. Intracellular calcium homeostasis and its dysregulation    underlying epileptic seizures. Seizure. 2022. doi: 10.1016/j.seizure.2022.11.007
53.    Sorrentino V. Sarcoplasmic reticulum: structural determinants and protein dynamics. Int J Biochem Cell Biol. 2011; 43(8): 1075-1078. doi: 10.1016/j.biocel.2011.04.004
54.    Stutzmann GE, Mattson MP. Endoplasmic reticulum Ca2+ handling in excitable cells in health and disease. Pharmacol Rev. 2011; 63(3): 700-727. doi: 10.1124/pr.110.003814
55.    Amodio G, Moltedo O, Faraonio R, Remondelli P. Targeting the endoplasmic reticulum unfolded protein response to counteract the oxidative stress-induced endothelial dysfunction. Oxid Med Cell Longev. 2018; 2018. doi: 10.1155/2018/4946289
56.    Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum:    coordination of gene transcriptional and translational controls. Genes Dev. 1999;13(10):1211-1233. doi: 10.1101/gad.13.10.1211
57.    Gude NA, Broughton KM, Firouzi F, Sussman MA. Cardiac ageing: extrinsic and intrinsic factors in cellular renewal and senescence. Nat Rev Cardiol. 2018; 15(9): 523-542. doi: 10.1038/s41569-018-0061-5
58.    Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial metabolism in aging heart. Circ Res. 2016; 118(10): 1593-1611. doi: 10.1161/CIRCRESAHA.116.307505
59.    Fernandez-Sanz C, Ruiz-Meana M, Miro-Casas E, et al. Defective sarcoplasmic reticulum–mitochondria calcium exchange in aged mouse myocardium. Cell Death Dis. 2014; 5(12): e1573-e1573. doi.org/10.1038/cddis.2014.526
60.    Hussain SG, Ramaiah KVA. Reduced eIF2α phosphorylation and increased proapoptotic proteins in aging. Biochem Biophys Res Commun. 2007;355(2):365-370. doi: 10.1016/j.bbrc.2007.01.156
61.    Nuss JE, Choksi KB, DeFord JH, Papaconstantinou J. Decreased enzyme activities of chaperones PDI and BiP in aged mouse livers. Biochem Biophys Res Commun. 2008; 365(2): 355-361. doi: 10.1016/j.bbrc.2007.10.194
62.    Zhou Y, Murugan DD, Khan H, Huang Y, Cheang WS. Roles and therapeutic implications of endoplasmic reticulum stress and oxidative stress in cardiovascular diseases. Antioxidants. 2021; 10(8): 1167. doi: 10.3390/antiox10081167
63.    De  Duve  C,  Baudhuin  P.  Peroxisomes  (microbodies  and  related  particles).  Physiol  Rev.  1966; 46(2): 323-357. doi:10.1152/physrev.1966.46.2.323
64.    Fransen M. Peroxisome dynamics: molecular players, mechanisms, and (dys) functions. Int Sch Res Not. 2012;2012. doi:10.5402/2012/714192
65.    Singh I. Biochemistry of peroxisomes in health and disease. Mol Cell Biochem. 1997; 167(1): 1-29. doi: 10.1023/a:1006883229684
66.    Antonenkov VD, Grunau S, Ohlmeier S, Hiltunen JK. Peroxisomes are oxidative organelles. Antioxid Redox Signal. 2010; 13(4): 525-537. doi: 10.1089/ars.2009.2996
67.    Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. Biochem J. 1972; 128(3): 617-630. doi: 10.1042/bj1280617
68.    Rokka A, Antonenkov VD, Soininen R, et al. Pxmp2 is a channel-forming protein in mammalian peroxisomal membrane. PLoS One. 2009;4(4):e5090. doi.org/10.1371/journal.pone.0005090
69.    Fritz R, Bol J, Hebling U, et al. Compartment-dependent management of H2O2 by peroxisomes. Free Radic Biol Med. 2007; 42(7): 1119- 1129. doi.org/10.1016/j.freeradbiomed.2007.01.014
70.    Petriv OI, Rachubinski RA. Lack of peroxisomal catalase causes a progeric phenotype in Caenorhabditis elegans. J Biol Chem. 2004; 279(19): 19996-20001. doi:10.1074/jbc.M400207200
71.    Eddaikra A, Eddaikra N. Endogenous enzymatic antioxidant defense and pathologies. In: Antioxidants-Benefits, Sources, Mechanisms of Action. IntechOpen; 2021. doi: 10.5772/intechopen.95504
72.    Sheikh FG, Pahan K, Khan M, Barbosa E, Singh I. Abnormality in catalase import into peroxisomes leads to severe neurological disorder. Proc Natl Acad Sci U S A. 1998;95(6):2961-2966. doi:10.1073/pnas.95.6.2961
73.    Gabaldón T, Snel B, Zimmeren F van, Hemrika W, Tabak H, Huynen MA. Origin and evolution of the peroxisomal proteome. Biol Direct. 2006;1(1):1-14. doi.org/10.1186/1745-6150-1-8
74.    Poirier Y, Antonenkov VD, Glumoff T, Hiltunen JK. Peroxisomal β-oxidation—a metabolic pathway with multiple functions. Biochim Biophys Acta (BBA)-Molecular Cell Res. 2006;1763(12):1413-1426. doi.org/10.1016/j.bbamcr.2006.08.034
75.    Terlecky SR, Koepke JI, Walton PA. Peroxisomes and aging. Biochim Biophys Acta. 2006;1763(12):1749-1754. doi:10.1016/j.bbamcr.2006.08.017
76.    Koepke JI, Nakrieko K-A, Wood CS, et al. Restoration of peroxisomal catalase import in a model of human cellular aging. Traffic. 2007;8(11):1590-1600. doi:10.1111/j.1600-0854.2007.00633.x
77.    Koepke JI, Wood CS, Terlecky LJ, Walton PA, Terlecky SR. Progeric effects of catalase inactivation in human cells. Toxicol Appl Pharmacol. 2008;232(1):99-108. doi:10.1016/j.taap.2008.06.004
78.    Schriner SE, Linford NJ, Martin GM, et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 2005; 308(5730): 1909-1911. doi:10.1126/science.1106653
79.    Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury. Lab Invest. 1982; 47(5): 412-426.
80.    McCord JM, Roy RS, Schaffer SW. Free radicals and myocardial ischemia. The role of xanthine oxidase. Adv Myocardiol. 1985;5:183- 189.
81.    Hansen JB, Dos Santos LRB, Liu Y, et al. Glucolipotoxic conditions induce β-cell iron import, cytosolic ROS formation and apoptosis. J Mol Endocrinol. 2018; 61(2): 69-77. doi: 10.1530/JME-17-0262
82.    Kuznetsov A V, Margreiter R, Ausserlechner MJ, Hagenbuchner J. The complex interplay between mitochondria, ROS and entire cellular metabolism. Antioxidants. 2022; 11(10): 1995. doi: 10.3390/antiox11101995
83.    Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004; 279(47): 49064-49073. doi:10.1074/jbc.M407715200
84.    Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014; 94(3): 909-950. doi:10.1152/physrev.00026.2013
85.    Boyman L, Karbowski M, Lederer WJ. Regulation of mitochondrial ATP production: Ca2+ signaling and quality control. Trends Mol Med. 2020; 26 (1:21-39. doi: 10.1016/j.molmed.2019.10.007
86.    Sun H, Olson KC, Gao C, et al. Catabolic Defect of Branched-Chain Amino Acids Promotes Heart Failure. Circulation. 2016;133(21):2038-2049. doi:10.1161/CIRCULATIONAHA.115.020226
87.    Wu S-P, Kao C-Y, Wang L, et al. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure. Nat Commun. 2015;6:8245. doi:10.1038/ncomms9245
88.    Iliceto S, Scrutinio D, Bruzzi P, et al. Effects of L-carnitine administration on left ventricular remodeling after acute anterior myocardial infarction: the L-Carnitine Ecocardiografia Digitalizzata Infarto Miocardico (CEDIM) Trial. J Am Coll Cardiol. 1995;26(2):380-387. doi:10.1016/0735-1097(95)80010-e
89.    Tarantini G, Scrutinio D, Bruzzi P, Boni L, Rizzon P, Iliceto S. Metabolic treatment with L-carnitine in acute anterior ST segment elevation myocardial infarction. A randomized controlled trial. Cardiology. 2006;106(4):215-223. doi:10.1159/000093131
90.    Holubarsch CJF, Rohrbach M, Karrasch M, et al. A double-blind randomized multicentre clinical trial to evaluate the efficacy and safety of two doses of etomoxir in comparison with placebo in patients with moderate congestive heart failure: the ERGO (etomoxir for the recovery of glucose oxidation) stu. Clin Sci (Lond). 2007;113(4):205-212. doi:10.1042/CS20060307
91.    Chong C-R, Ong GJ, Horowitz JD. Emerging drugs for the treatment of angina pectoris. Expert Opin Emerg Drugs. 2016; 21(4): 365-376. doi:10.1080/14728214.2016.1241231
92.    Yin X, Dwyer J, Langley SR, et al. Effects of perhexiline-induced fuel switch on the cardiac proteome and metabolome. J Mol Cell Cardiol. 2013; 55: 27-30. doi:10.1016/j.yjmcc.2012.12.014
93.    Marin TL, Gongol B, Zhang F, et al. AMPK promotes mitochondrial biogenesis and function by phosphorylating the epigenetic factors DNMT1, RBBP7, and HAT1. Sci Signal. 2017;10(464). doi:10.1126/scisignal.aaf7478
94.    Menasché P, Jamieson WR, Flameng W, Davies MK. Acadesine: a new drug that may improve myocardial protection in coronary artery bypass grafting. Results of the first international multicenter study. Multinational Acadesine Study Group. J Thorac Cardiovasc Surg. 1995;110(4 Pt 1):1096-1106. doi:10.1016/s0022-5223(05)80179-5
95.    Newman MF, Ferguson TB, White JA, et al. Effect of adenosine-regulating agent acadesine on morbidity and mortality associated with coronary artery bypass grafting: the RED-CABG randomized controlled trial. JAMA. 2012;308(2):157-164. doi:10.1001/jama.2012.7633
96.    Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nat Rev Cardiol. 2019; 16(1): 33-55. doi:10.1038/s41569-018-0074-0
97.    Burté F, Carelli V, Chinnery PF, Yu-Wai-Man P. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol. 2015; 11(1): 11-24. doi:10.1038/nrneurol.2014.228
98.    Coronado M, Fajardo G, Nguyen K, et al. Physiological Mitochondrial Fragmentation Is a Normal Cardiac Adaptation to Increased Energy Demand. Circ Res. 2018; 122(2): 282-295. doi:10.1161/CIRCRESAHA.117.310725
99.    Ikeda Y, Shirakabe A, Maejima Y, et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res. 2015;116(2):264-278. doi:10.1161/CIRCRESAHA.116.303356
100.    Cahill TJ, Leo V, Kelly M, et al. Resistance of Dynamin-related Protein 1 Oligomers to Disassembly Impairs Mitophagy, Resulting in Myocardial Inflammation and Heart Failure. J Biol Chem. 2015;290(43):25907-25919. doi:10.1074/jbc.M115.665695
101.    Ishikita A, Matoba T, Ikeda G, et al. Nanoparticle-Mediated Delivery of Mitochondrial Division Inhibitor 1 to the Myocardium Protects the Heart From Ischemia-Reperfusion Injury Through Inhibition of Mitochondria Outer Membrane Permeabilization: A New Therapeutic Modality for Acute Myocardial. J Am Heart Assoc. 2016;5(7). doi:10.1161/JAHA.116.003872
102.    Bordt EA, Clerc P, Roelofs BA, et al. The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species. Dev Cell. 2017; 40(6): 583-594.e6. doi:10.1016/j.devcel.2017.02.020
103.    Gao D, Zhang L, Dhillon R, Hong T-T, Shaw RM, Zhu J. Dynasore protects mitochondria and improves cardiac lusitropy in Langendorff perfused mouse heart. PLoS One. 2013;8(4):e60967. doi:10.1371/journal.pone.0060967
104.    Murphy MP. Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol. 1997;15(8):326-330. doi: 10.1016/S0167- 7799(97)01068-8
105.    Debowska K, Debski D, Hardy M, et al. Toward selective detection of reactive oxygen and nitrogen species with the use of fluorogenic probes--Limitations, progress, and perspectives. Pharmacol Rep. 2015; 67(4): 756-764. doi:10.1016/j.pharep.2015.03.016
106.    Zielonka J, Joseph J, Sikora A, et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev. 2017;117(15):10043-10120. doi: 10.1021/acs.chemrev.7b00042
107.    Neuzil J, Widén C, Gellert N, et al. Mitochondria transmit apoptosis signalling in cardiomyocyte-like cells and isolated hearts exposed to experimental ischemia-reperfusion injury. Redox Rep. 2007;12(3):148-162. doi: 10.1179/135100007X200227
108.    Adlam VJ, Harrison JC, Porteous CM, et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia‐reperfusion injury. FASEB J. 2005; 19(9): 1088-1095. doi: 10.1179/135100007X200227
109.    Dare AJ, Logan A, Prime TA, et al. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model. J Hear Lung Transplant. 2015; 34(11): 1471-1480. doi: 10.1016/j.healun.2015.05.007
110.    Graham D, Huynh NN, Hamilton CA, et al. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009; 54(2): 322-328. doi: 10.1161/HYPERTENSIONAHA.109.130351
111.    Forini F, Pitto L, Nicolini G. Thyroid hormone, mitochondrial function and cardioprotection. Thyroid Hear A Compr Transl Essay. 2020: 109-126. doi:10.1007/978-3-030-36871-5_9
112.    Firsov AM, Kotova EA, Orlov VN, Antonenko YN, Skulachev VP. A mitochondria‐targeted antioxidant can inhibit peroxidase activity of cytochrome c by detachment of the protein from liposomes. FEBS Lett. 2016;590(17):2836-2843. doi.org/10.1002/1873-3468.12319
113.    Kolosova NG, Kozhevnikova OS, Muraleva NA, et al. SkQ1 as a tool for controlling accelerated senescence program: experiments with OXYS rats. Biochem. 2022; 87(12-13): 1552-1562. doi.org/10.1134/s0006297922120124
114.    Bakeeva LE, Barskov I V, Egorov M V, et al. Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS-and age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke). Biochem. 2008; 73: 1288-1299. doi: 10.1134/s000629790812002x
115.    115.    Jia B, Ye J, Gan L, et al. Mitochondrial antioxidant SkQ1 decreases inflammation following hemorrhagic shock by protecting myocardial mitochondria. Front Physiol. 2022; 13: 1047909. doi.org/10.3389/fphys.2022.1047909
116.    Yani E V, Katargina LA, Chesnokova NB, et al. The first experience of using the drug Vizomitin in the treatment of dry eyes. Pr Med. 2012;4(59):134-137.
117.    Williamson J, Davison G. Targeted antioxidants in exercise-induced mitochondrial oxidative stress: emphasis on DNA damage. Antioxidants. 2020;9(11):1142. doi: 10.3390/antiox9111142
118.    Wen JJ, Williams TP, Cummins CB, Colvill KM, Radhakrishnan GL, Radhakrishnan RS. Effect of mitochondrial antioxidant (Mito- TEMPO) on burn-induced cardiac dysfunction. J Am Coll Surg. 2021; 232(4): 642-655. doi: 10.1016/j.jamcollsurg.2020.11.031
119.    Akkoca A, Celen MC, Tuncer S, Dalkilic N. Abdominal Ischemia-Reperfusion Induced Cardiac Dysfunction Can Be Prevented by MitoTEMPO. J Investig Surg. 2022; 35(3): 577-583. doi: 10.1080/08941939.2021.1902593
120.    Tambe PK, Mathew AJ, Bharati S. Cardioprotective potential of mitochondria-targeted antioxidant, mito-TEMPO, in 5-fluorouracil- induced cardiotoxicity. Cancer Chemother Pharmacol. 2023; 91(5): 389-400. doi.org/10.1007/s00280-023-04529-4
121.    Olgar Y, Billur D, Tuncay E, Turan B. MitoTEMPO provides an antiarrhythmic effect in aged-rats through attenuation of mitochondrial reactive oxygen species. Exp Gerontol. 2020; 136: 110961. doi: 10.1016/j.exger.2020.110961

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available