Author(s):
Abdulrahim A. Alzain, Alaa. A. Makki, Hagar M. Mohamed, Rayan Yousif, Mohammed A. Almogaddam, Wadah Osman, Ahmed Ashour, Mohammed Hamed Alqarni, Ahmed I. Foudah, Asmaa Sherif, Sabrin R.M. Ibrahim
Email(s):
w.osman@psau.edu.sa
DOI:
10.52711/0974-360X.2025.00427
Address:
Abdulrahim A. Alzain1, Alaa. A. Makki 1, Hagar M. Mohamed2,3, Rayan Yousif1, Mohammed A. Almogaddam1, Wadah Osman4*, Ahmed Ashour4, Mohammed Hamed Alqarni4, Ahmed I. Foudah4, Asmaa Sherif 4, Sabrin R.M. Ibrahim5
1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Gezira, Sudan.
2Department of Medical Laboratory Analysis, Faculty of Medical and Health Sciences, Liwa University, Abu Dhabi 41009, United Arab of Emirates.
3Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt.
4Department of Pharmacognosy, Faculty of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia.
5Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, 21442, Saudi. Arabia
*Corresponding Author
Published In:
Volume - 18,
Issue - 7,
Year - 2025
ABSTRACT:
HA2AR is a membrane receptor that exemplifies an important pathophysiological mediator in the development of multiple illnesses including cancer. The recent scientific literature supports the therapeutic significance of HA2AR targeting for cancer chemotherapy due to the established role of HA2AR as an immune check blocker that facilitates the immune escape of the tumor in hypoxic environments. In this study, we have been focused on harnessing integral ensembles of computational chemistry to screen natural compounds from the SN3 database in search of potential immunotherapeutics via HA2AR inhibition. This includes structure-based pharmacophore modeling, molecular docking, MM/GBSA calculations, and molecular dynamic simulation. Upon the Phase screening, 2965 compounds that matched the developed hypothesis have been subjected to HTVS and XP docking analysis. Three SN3 molecules; SN0259126, SN0296460, and SN0355465, outpaced the docking score of ZM241385, the A2A known co-crystalized inhibitor. The rescoring of these hits through MM/GBSA calculations disclosed intriguing binding free energies, particularly for SN0355465; ?G equals -70.57kcal/mol. To decisively demonstrate the robustness of these results, HA2AR in complex with each of the four compounds; ZM241385, SN0259126, SN0296460, and SN0355465, have been subjected to MD simulations for 100 nanoseconds. RMSD, RMSF, and protein-ligand contacts histograms foretold durable interaction patterns with no major fluctuations in alpha carbon of HA2AR. These results protrude three natural compounds as prospective immunotherapeutics with a remarkable tendency to repressively tackle HA2AR which would construct new avenues in the perception of adenosine receptors and their corresponding clinical utility in cancer treatment.
Cite this article:
Abdulrahim A. Alzain, Alaa. A. Makki, Hagar M. Mohamed, Rayan Yousif, Mohammed A. Almogaddam, Wadah Osman, Ahmed Ashour, Mohammed Hamed Alqarni, Ahmed I. Foudah, Asmaa Sherif, Sabrin R.M. Ibrahim. Structure-based Drug Design Approaches Disclose Natural Molecules as Potential Cancer Immunotherapeutics via Modulation of HA2AR Receptor. Research Journal of Pharmacy and Technology. 2025;18(7): 2980-0. doi: 10.52711/0974-360X.2025.00427
Cite(Electronic):
Abdulrahim A. Alzain, Alaa. A. Makki, Hagar M. Mohamed, Rayan Yousif, Mohammed A. Almogaddam, Wadah Osman, Ahmed Ashour, Mohammed Hamed Alqarni, Ahmed I. Foudah, Asmaa Sherif, Sabrin R.M. Ibrahim. Structure-based Drug Design Approaches Disclose Natural Molecules as Potential Cancer Immunotherapeutics via Modulation of HA2AR Receptor. Research Journal of Pharmacy and Technology. 2025;18(7): 2980-0. doi: 10.52711/0974-360X.2025.00427 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-7-7
REFERENCES:
1. H. Zimmermann. Extracellular metabolism of ATP and other nucleotides. Naunyn. Schmiedebergs. Arch. Pharmacol. 2000; 362(4–5): 299–309 doi: 10.1007/s002100000309.
2. A. N. Drury and A. Szent-Györgyi. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J. Physiol. 1929; 68(3): 213–237 doi: 10.1113/jphysiol.1929.sp002608.
3. B. B. Fredholm, E. Irenius, B. Kull, and G. Schulte. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem. Pharmacol. 2001; 61(4): 443–448 doi: 10.1016/s0006-2952(00)00570-0.
4. K. N. Klotz. Adenosine receptors and their ligands. Naunyn. Schmiedebergs. Arch. Pharmacol. 2000; 362(4–5): 382–391 doi: 10.1007/s002100000315.
5. A. J. Hutchison et al. 2-(Arylalkylamino)adenosin-5’-uronamides: a new class of highly selective adenosine A2 receptor ligands. J. Med. Chem. 1990; 33(7): 1919–1924 doi: 10.1021/jm00169a015.
6. J. E. Foley. Rationale for activation of adenosine A1 receptors in adipocytes in the treatment of non‐insulin‐dependent diabetes mellitus. Drug Dev. Res. 1994; 32(2): 126–126 doi: 10.1002/ddr.430320209.
7. T. Kanda, S. Shiozaki, J. Shimada, F. Suzuki, and J. Nakamura. KF17837: a novel selective adenosine A2A receptor antagonist with anticataleptic activity. Eur. J. Pharmacol. 1994; 256(3): 263–268 doi: 10.1016/0014-2999(94)90551-7.
8. J. Blay, T. D. White, and D. W. Hoskin. The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res. 1997; 57(13): 2602–2605.
9. Z. Q. Zhao et al. Adenosine attenuates reperfusion-induced apoptotic cell death by modulating expression of Bcl-2 and Bax proteins. J. Mol. Cell. Cardiol. 2001; 33(1): 57–68 doi: 10.1006/jmcc.2000.1275.
10. M. Koshiba, H. Kojima, S. Huang, S. Apasov, and M. V Sitkovsky. Memory of extracellular adenosine A2A purinergic receptor-mediated signaling in murine T cells. J. Biol. Chem. 1997; 272(41): 25881–25889 doi: 10.1074/jbc.272.41.25881.
11. M. F. Ethier, V. Chander, and J. G. J. Dobson. Adenosine stimulates proliferation of human endothelial cells in culture. Am. J. Physiol. 1993; 265(1): H131-8 doi: 10.1152/ajpheart.1993.265.1.H131.
12. S. Merighi et al. Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J. Invest. Dermatol. 2002; 119(4): 923–933. doi: 10.1046/j.1523-1747.2002.00111.x.
13. N. Etique, I. Grillier-Vuissoz, J. Lecomte, and S. Flament. Crosstalk between adenosine receptor (A2A isoform) and ERalpha mediates ethanol action in MCF-7 breast cancer cells. Oncol. Rep. 2009; 21(4): 977–981 doi: 10.3892/or_00000311.
14. D. A. Tumbarello and C. E. Turner. Hic-5 Contributes to Transformation Through a RhoA / ROCK-dependent Pathway. J. Cell. Physiol. 2006; 211(3): 736–747 doi: 10.1002/JCP.
15. R. D. Leone et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol. Immunother. 2018; 67(8): 1271–1284 doi: 10.1007/s00262-018-2186-0.
16. S. M. Hatfield and M. Sitkovsky. A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer. Curr. Opin. Pharmacol. 2016; 29(1): 90–96 doi: 10.1016/j.coph.2016.06.009.
17. F. Vincenzi et al. Pharmacology of Adenosine Receptors: Recent Advancements. Biomolecules. 2023; 13(9); 1–33 doi: 10.3390/biom13091387.
18. M. Feher and J. M. Schmidt. Property Distributions: Differences Between Drugs, Natural Products, and Molecules from Combinatorial Chemistry. ChemInform. 2003; 34(17): 218–227 doi: 10.1002/chin.200317217.
19. S. Hemaiswarya, A. K. Kruthiventi, and M. Doble. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine. 2008; 15(8): 639–652 doi: 10.1016/j.phymed.2008.06.008.
20. B. Shaker, S. Ahmad, J. Lee, C. Jung, and D. Na. In silico methods and tools for drug discovery. Comput. Biol. Med. 2021; 137: 104851 doi: 10.1016/j.compbiomed.2021.104851.
21. G. Shanmugam and J. Jeon. Computer-Aided Drug Discovery in Plant Pathology. Plant Pathol. J. 2017; 33(6): 529–542 doi: 10.5423/PPJ.RW.04.2017.0084.
22. T. Weinert et al. Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons. Nat. Commun. 2017; 8(1) doi: 10.1038/s41467-017-00630-4.
23. G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided. Mol. Des. 2013; 27(3): 221–234 doi: 10.1007/s10822-013-9644-8.
24. N. K. Salam, R. Nuti, and W. Sherman. Novel method for generating structure-based pharmacophores using energetic analysis. J. Chem. Inf. Model. 2009; 49(10): 2356–2368 doi: 10.1021/ci900212v.
25. T. A. Halgren et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004; 47(7): 1750–1759 doi: 10.1021/jm030644s.
26. A. Alzain, F. Elbadwi, and F. Alsamani. Discovery of novel TMPRSS2 inhibitors for COVID-19 using in silico fragment-based drug design, molecular docking, molecular dynamics, and quantum mechanics studies. Informatics Med. Unlocked. 2022; 29: 100870 doi: 10.1016/j.imu.2022.100870.
27. J. Ash and D. Fourches. Characterizing the Chemical Space of ERK2 Kinase Inhibitors Using Descriptors Computed from Molecular Dynamics Trajectories. J. Chem. Inf. Model. 2017; 57(6): 1286–1299 doi: 10.1021/acs.jcim.7b00048.
28. S. A. Abdel-Rahman, V. Talagayev, S. Pach, G. Wolber, and M. T. Gabr. Discovery of Small-Molecule TIM-3 Inhibitors for Acute Myeloid Leukemia Using Pharmacophore-Based Virtual Screening. J. Med. Chem. 2023; 66(16): 11464–11475 doi: 10.1021/acs.jmedchem.3c00960.
29. T. I. Adelusi et al. Molecular modeling in drug discovery. Informatics Med. Unlocked. 2022; 29: 100880 doi: 10.1016/j.imu.2022.100880.
30. Z. Chen et al. Overview of tumor immunotherapy based on approved drugs. Life Sci. 2024; 340: 122419 doi: 10.1016/j.lfs.2024.122419.
31. C. Xia, S. Yin, K. K. W. To, and L. Fu. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol. Cancer. 2023; 22(1): 1–17 doi: 10.1186/s12943-023-01733-x.
32. R. D. Leone and L. A. Emens. Targeting adenosine for cancer immunotherapy. J. Immunother. Cancer. 2018; 6(1): 1–9 doi: 10.1186/s40425-018-0360-8.
33. B. Allard et al. Adenosine A2A receptor is a tumor suppressor of NASH-associated hepatocellular carcinoma. Cell Reports Med. 2023; 4(9): 1–21 doi: 10.1016/j.xcrm.2023.101188.
34. E. De Marchi, A. Pegoraro, R. Turiello, F. Di Virgilio, S. Morello, and E. Adinolfi. A2A Receptor Contributes to Tumor Progression in P2X7 Null Mice. Front. Cell Dev. Biol. 2022; 10 doi: 10.3389/fcell.2022.876510.
35. J. Zhang, W. Yan, W. Duan, K. Wüthrich, and J. Cheng. Tumor immunotherapy using A2a adenosine receptor antagonists. Pharmaceuticals. 2020; 13(9): 1–14 doi: 10.3390/ph13090237.
36. E. Garcia-Lorenzo and V. Moreno. Targeting the adenosine 2A receptor in non-small cell lung cancer: shooting with blank bullets? Transl. Lung Cancer Res. 2023; 12(4): 653–656 doi: 10.21037/tlcr-23-38.
37. J. Kjaergaard, S. Hatfield, G. Jones, A. Ohta, and M. Sitkovsky. A2A Adenosine Receptor Gene Deletion or Synthetic A2A Antagonist Liberate Tumor-Reactive CD8+ T Cells from Tumor-Induced Immunosuppression. J. Immunol. 2018; 201(2): 782–791 doi: 10.4049/jimmunol.1700850.
38. Y. Myojin et al. Adenosine A2a receptor inhibition increases the anti-tumor efficacy of anti-PD1 treatment in murine hepatobiliary cancers. JHEP Reports. 2024; 6(1): 100959 doi: 10.1016/j.jhepr.2023.100959.
39. H. Ye, J. Zhao, X. Xu, D. Zhang, H. Shen, and S. Wang. Role of adenosine A2a receptor in cancers and autoimmune diseases. Immunity, Inflamm. Dis. 2023; 11(4): 1–11 doi: 10.1002/iid3.826.
40. B. Shao, X. Huang, F. Xu, J. Pan, Y. Wang, and S. Zhou. A pH-responsive polymersome depleting regulatory T cells and blocking A2A receptor for cancer immunotherapy. Nano Res. 2022; 15(3): 2324–2334 doi: 10.1007/s12274-021-3815-z.
41. A. Saini, R. Patel, S. Gaba, G. Singh, G. D. Gupta, and V. Monga. Adenosine receptor antagonists: Recent advances and therapeutic perspective. Eur. J. Med. Chem. 2022; 227: 113907 doi: 10.1016/j.ejmech.2021.113907.
42. M. Falsini et al. Novel 8-amino-1,2,4-triazolo[4,3-a]pyrazin-3-one derivatives as potent human adenosine A 1 and A 2A receptor antagonists. Evaluation of their protective effect against β-amyloid-induced neurotoxicity in SH-SY5Y cells. Bioorg. Chem. 2019; 87:380–394 doi: 10.1016/j.bioorg.2019.03.046.
43. M. Falsini et al. Antioxidant-Conjugated 1,2,4-Triazolo[4,3- a]pyrazin-3-one Derivatives: Highly Potent and Selective Human A2A Adenosine Receptor Antagonists Possessing Protective Efficacy in Neuropathic Pain. J. Med. Chem. 2019; 62(18): 8511–8531 doi: 10.1021/acs.jmedchem.9b00778.
44. X. Liu, D. Shi, S. Zhou, H. Liu, H. Liu, and X. Yao. Molecular dynamics simulations and novel drug discovery. Expert Opin. Drug Discov. 2018; 13(1): 23–37 doi: 10.1080/17460441.2018.1403419.
45. Shinde, G., Thombre, A., Bhadalekar, M., Chougule, N., Shelke, B. and Shinde, S., Molecular Docking, Drug likeness Studies and ADMET Prediction of Phytochemical of plant Ipomoea Tricolor for Breast Cancer Activity. Asian J Pharm Res. 2025; 15(2): 97-3.
46. Tarihalkar, S. S., Patil, V., and Patil, S. K. Anti-Cancer Potential of Salaciaoblonga Wall Compounds by Targeting 5HZN and 1Q1A Receptor: A Comprehensive Molecular Docking and Simulation Approaches. Asian J Pharm Technol. 2024; 14(3): 187-8.
47. Patil, S.D., Vinayak, K. and Anwar, S. Docking Studies and Synthesis of Novel Flavones Screened for Biological Activities like Anticancer and Antioxidant Activity. Asian J. Research Chem. 2015; 8(6): 399-406.
48. Jainab, N.H. and Raja, M.K. In Silico Molecular Docking Studies on the Chemical Constituents of Clerodendrum phlomidis for its Cytotoxic Potential against Breast Cancer Markers. Res. J. Pharm. Tech. 2018; 11(4): 1612-1618.
49. Barua, A., Kesavan, K. and Jayanthi, S. Molecular Docking Studies of Plant Compounds to Identify Efficient Inhibitors for Ovarian Cancer. Research J. Pharm. and Tech. 2018; 11(9): 3811-3815.
50. Kamath, V., Pai, A. and Raj, R. In Silico approach for the Rational Design of Tankyrase I Inhibitors–A Case Study on Flavone based Anticancer Leads. Research J. Pharm. and Tech. 2018; 11(10): 4511-4514.
51. Fadilah, F., Wiyono, L., Edina, B.C., Rahmawati, R.A., Erlina, L., Tedjo, A. and Paramita, R.I. In Silico Study and In Vitro test of Extract Kaempferia pandurata Roxb. as Anti ER (+) Breast Cancer Cell Line MCF-7. Research J. Pharm. Tech. 2019; 12(5): 2391-2395.
52. Purushothaman, B., Suganthi, N., Jothi, A. and Shanmugam, K. Molecular Docking Studies of potential anticancer agents from Ocimum basilicum L. against human colorectal cancer regulating genes: An insilico approach. Res. J. Pharm. and Tech. 2019; 12(7): 3423-3427.
53. Parameswari. P, Devika. R. In silico Molecular Docking Studies of Quercetin Compound against Anti-inflammatory and Anticancer Proteins. Res. J. Pharm. Tech. 2019; 12(11): 5305-5309.
54. Nisha, H. and Karavadi, B. Computational Analysis to Identify the Drug Targets and their Lead Molecules in Pancreatic Cancer. Res. J. Pharm. Tech. 2017; 10(6): 1708-1716.