Author(s):
Anila Mishra, Zeeshan Fatima, Akash Ved, Sajal Srivastava, Mohammad Yasir
Email(s):
zfatima@amity.edu
DOI:
10.52711/0974-360X.2025.00470
Address:
Anila Mishra1, Zeeshan Fatima1, Akash Ved2, Sajal Srivastava1, Mohammad Yasir1
1Amity Institute of Pharmacy, Lucknow, Amity University, Uttar Pradesh, Sector -125, Noida - 201313, India.
2Faculty of Pharmacy, Dr. A.P.J. Abdul Kalam Technical University, Lucknow - 226031, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 7,
Year - 2025
ABSTRACT:
Molecules containing imidazole possess a diverse array of pharmacological activities. Recently, a new library of 2,4,5-trisubstituted imidazoles was synthesised in our previous study utilising a novel organocatalyzed synthetic pathway. Further, these molecules were screened for in vitro enzymatic activity against target a-glucosidase at different concentrations (0–1000µg/mL) of trisubstituted imidazoles. The absorbance was measured at 405 and 540nm using a multiplate reader, and the percentage of a-glucosidase inhibitory activity with the IC 50 values of 2,4,5-trisubstituted imidazoles was calculated. Among them, compounds 3a, 3b, and 3e were found to have good a-glucosidase inhibition with an IC 50 of 4.8, 5.3, and 4.3µg/mL, respectively, when compared to the standard drug acarbose. Additionally, molecular docking studies were performed to comprehend the molecular interaction between the molecule and imidazole-sensitive hypoglycemic target a-glucosidase (PDB: 3WY1). The majority of 2,4,5-trisubstituted imidazoles showed better binding energy (-7.4 to -8.2Kcal/mol) with the binding pockets of a-glucosidase. Swiss ADME was employed to predict the adsorption, distribution, metabolism, and elimination properties of the synthesised compounds.
Cite this article:
Anila Mishra, Zeeshan Fatima, Akash Ved, Sajal Srivastava, Mohammad Yasir. Unravelling the Potential of Trisubstituted Imidazole Derivatives to Combat Hyperglycemia: An In vitro and In silico Approach. Research Journal of Pharmacy and Technology. 2025;18(7):3262-7. doi: 10.52711/0974-360X.2025.00470
Cite(Electronic):
Anila Mishra, Zeeshan Fatima, Akash Ved, Sajal Srivastava, Mohammad Yasir. Unravelling the Potential of Trisubstituted Imidazole Derivatives to Combat Hyperglycemia: An In vitro and In silico Approach. Research Journal of Pharmacy and Technology. 2025;18(7):3262-7. doi: 10.52711/0974-360X.2025.00470 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-7-50
8. REFERENCES:
1. Kerru, N.; Singh-Pillay, A.; Awolade, P.; Singh, P., Current anti-diabetic agents and their molecular targets: A review. European Journal of Medicinal Chemistry. 2018, 152, 436-488.
2. KG Kanase, Shinde NV, Bharti DK, Undale VR, Bhosale AV. Diabetes Macroangiopathy- A Review. Research J. Pharmacology and Pharmacodynamics. 2009; 1(2): 45-49.
3. Alfatlawi, I. O.; Sahab, E. H.; Aljamali, N. M., Synthesis of (Tetrazole, oxazepine, azo, imine) ligands and studying of their (organic identification, chromatography, solubility, physical, thermal analysis, bio-study). Research Journal of Pharmacy and Technology. 2018; 11(7): 2821-2828.
4. Preethi P Jaya., Karthikeyan E., Lohita M., Goutham Teja P., Subhash M., Shaheena P., Prashanth Y., Sai Nandhu K.. Benzimidazole: An important Scaffold in Drug Discovery. Asian J. Pharm. Tech. 2015; 5(3); 138-152. doi: 10.5958/2231-5713.2015.00021.522.
5. Yar, M.; Bajda, M.; Shahzad, S.; Ullah, N.; Gilani, M. A.; Ashraf, M.; Rauf, A.; Shaukat, A., Organocatalyzed solvent free an efficient novel synthesis of 2, 4, 5-trisubstituted imidazoles for α-glucosidase inhibition to treat diabetes. Bioorganic Chemistry. 2015; 58: 65-71.
6. Panchal I, B Panigrahi, CN Patel. Recent Advancement towards Treatment of Diabetes. Research J. Pharmacology and Pharmacodynamics. 2010; 2(1): 12-22.
7. Jan W. Eriksson, Johan Bodegard, David Nathanson, Marcus Thuresson, Thomas Nyström, Anna Norhammar. Sulphonylurea compared to DPP-4 inhibitors in combination with metformin carries increased risk of severe hypoglycemia, cardiovascular events, and all-cause mortality. Diabetes Research and Clinical Practice. 2016, 117, 39-47
8. Joshi, S. R.; Standl, E.; Tong, N.; Shah, P.; Kalra, S.; Rathod, R., Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opinion on Pharmacotherapy. 2015; 16 (13): 1959-1981.
9. Yang W, Liu J, Shan Z, et al. Acarbose compared with metformin as initial therapy in patients with newly diagnosed type 2 diabetes: an open-label, non-inferiority randomized trial. Lancet Diabetes Endocrinol. 2014; 2: 46-55.
10. Rashid RSM, Temurlu S, Abourajab A, Karsili P, Dinleyici M, Al-Khateeb B, Icil H. Drug Repurposing of FDA Compounds against α-Glucosidase for the Treatment of Type 2 Diabetes: Insights from Molecular Docking and Molecular Dynamics Simulations. Pharmaceuticals (Basel). 2023; Apr 6; 16(4):555.
11. Sahoo A U., S. Biswal, S. Sethy, H.K.S. Kumar, M. Banerjee. Imidazole and its Biological Activities: A Review. Asian J. Research Chem. 2012; 5(2): 171-182.
12. Borkow, G., Using copper to improve the well-being of the skin. Current Chemical Biology 2014, 8 (2), 89-102.
13. Eggleton JS, Jialal I. Thiazolidinediones. 2023 Feb 20. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing. 2023 Jan–. PMID: 31869120.
14. Limei Wang, Birgit Waltenberger, Eva-Maria Pferschy-Wenzig, Martina Blunder, Xin Liu, Clemens Malainer, Tina Blazevic, Stefan Schwaiger, Judith M. Rollinger, Elke H. Heiss, Daniela Schuster, Brigitte Kopp, Rudolf Bauer, Hermann Stuppner, Verena M. Dirsch, Atanas G. Atanasov. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochemical Pharmacology. 2014; 92(1): 73-89.
15. Lebovitz, H.E. Thiazolidinediones: the Forgotten Diabetes Medications. Curr Diab Rep. 19, 151 (2019).
16. Tolomeu, H.V.; Fraga, C.A.M. Imidazole: Synthesis, Functionalization and Physicochemical Properties of a Privileged Structure in Medicinal Chemistry. Molecules. 2023; 28: 838.
17. Noriega-Iribe, E.; Díaz-Rubio, L.; Estolano-Cobián, A.; Barajas-Carrillo, V.W.; Padrón, J.M.; Salazar-Aranda, R.; Díaz-Molina, R.; García-González, V.; Chávez-Santoscoy, R.A.; Chávez, D. In Vitro and In Silico Screening of 2,4,5-Trisubstituted Imidazole Derivatives as Potential Xanthine Oxidase and Acetylcholinesterase Inhibitors, Antioxidant, and Antiproliferative Agents. Appl. Sci. 2020: 10; 2889.
18. Chatterjee T, Pradeep Kumar Sahu, Shilpi Chatterjee, Jai Godheja. Current and Future Biotechnological Approaches for Diabetes Mellitus. Asian J. Pharm. Tech. 2011; 1(4): 94-98.
19. Husain, A.; Drabu S.; Kumar N.; Alam, M.M.; Bawa, S. Synthesis, and biological evaluation of di- and tri-substituted imidazoles as safer anti-inflammatory-antifungal agents. J. Pharm. Bioallied. Sci., 2013; 5(2): 154-61.
20. Arora, R.; Gill, N.S.; Kapoor, R.; Aggarwal, A.; Rana, A.C. Synthesis of 2,4,5-Triphenylimidazoles Novel Mannich Bases as Potential Antiinflammatory and Analgesic Agents. Curr. Res. Chem. 2012; 4: 99-109
21. Mishra A, Fatima Z, Ved A, Srivastava, S and Singh, A, L-Pipecolic Acid-catalyzed Highly Efficient Synthesis of 2,4,5-Trisubstituted Imidazoles and N-cycloalkyl-2,4,5-trisubstituted Imidazoles. Current Organocatalysis. 2023; 11: 2213-3372.
22. K.Kishore Kumar, R.S.K. Sharma, P. Chanti Babu, M. Sreenivasa Rao, K. Durga Prasadu, D. Ravi Kumar. Synthesis, characterization and pharmacological evaluation of novel spiro heterocyclic compounds as anti diabetic agents. Asian J. Research Chem. 2017; 10(3): 393-398. doi: 10.5958/0974-4150.2017.00067.0
23. Shreyash D. Kadam, Denni Mammen, Deepak S. Kadam, Sudhakar G. Patil. In silico molecular docking against C-KIT Tyrosine Kinase and ADME studies of 3-Ethyl-2-(2,3,4-trifluoro-phenylimino)-thiazolidin-4-one derivatives. Asian Journal of Research in Chemistry. 2023; 16(1): 55-4. doi: 10.52711/0974-4150.2023.00010
24. K. Hemalatha, V. Chakkaravarthi, K. Ganesa Murthy, R. Kayatri, K. Girija. Molecular Properties and Docking Studies of Benzimidazole Derivatives as Potential Peptide Deformylase Inhibitors. Asian J. Research Chem. 2014; 7(7): 644-648.
25. Sindhu. T. J, Arathi. K. N, Akhila Devi, Aswathi. T. A, Noushida. M, Midhun. M, Sajil Saju Kuttiyil. Synthesis, Molecular Docking and Antibacterial Studies of Novel Azole derivatives as Enoyl ACP Reductase Inhibitor in Escherichia coli. Asian J. Res. Pharm. Sci. 2019; 9(3): 174-180. doi: 10.5958/2231-5659.2019.00027.4
26. More S.A., N.M. Bhatia. Combinatorial Synthesis and Virtual Screening of Novel Oxazine and Thiazine Mini Libraries for Antidiabetic Activity. Asian J. Research Chem. 2014; 7(8): 751-764.
27. P.L.; Håkansson, K.; Holm, A.; Harrit, N. Peroxide chemistry of triaryl-substituted imidazoles. Fenflumizole, a non-steroidal, anti-inflammatory agent. Acta Chem. Scand. (Cph). 1991; 45(6): 627-31.
28. Atamjit Singh, Karanvir Singh, Aman Sharma, Komalpreet Kaur, Kirandeep Kaur, Renu Chadha, Preet Mohinder Singh Bedi. Recent developments in synthetic α-glucosidase inhibitors: A comprehensive review with structural and molecular insight. Journal of Molecular Structure. 2023; 1281: 135115.
29. Matthias Goebel, Gerhard Wolber, Patrick Markt, Bart Staels, Thomas Unger, Ulrich Kintscher, Ronald Gust. Characterization of new PPARγ agonists: Benzimidazole derivatives—importance of positions 5 and 6, and computational studies on the binding mode, Bioorganic and Medicinal Chemistry. 2010; 18(16): 5885-5895.
30. Jerome C. Bressi, Ron de Jong, Yiqin Wu, Andy J. Jennings, Jason W. Brown, Shawn O’Connell, Leslie W. Tari, Robert J. Skene, Phong Vu, Marc Navre, Xiaodong Cao, Anthony R. Gangloff. Benzimidazole and imidazole inhibitors of histone deacetylases: Synthesis and biological activity. Bioorganic and Medicinal Chemistry Letters. 2010; 20(10): 3138-3141.
31. Hou, T.; Wang, J.; Zhang, W.; Xu, X., ADME evaluation in drug discovery. 6. Can oral bioavailability in humans be effectively predicted by simple molecular property-based rules? Journal of Chemical Information and Modeling. 2007; 47(2): 460-463.
32. Buvana C, A. Sumathy, M. Sukumar. In silico Identification of Potential Xanthine Oxidase Inhibitors for the Treatment of Gout and Cardiovascular Disease. Asian J. Research Chem. 2013; 6(11): 1049-1053.