Author(s): Regina Andayani, Ajuanda Puteri, Aiyi Asnawi, Purnawan Pontana Putra

Email(s): purnawanpp@phar.unand.ac.id

DOI: 10.52711/0974-360X.2025.00462   

Address: Regina Andayani1, Ajuanda Puteri1, Aiyi Asnawi2, Purnawan Pontana Putra1*
1Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Andalas, Padang, 25163, Indonesia.
2Faculty of Pharmacy, Bhakti Kencana University, Bandung, 40614, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 7,     Year - 2025


ABSTRACT:
a-Mangostin emerges as a highly potent chemopreventive and chemotherapeutic agent, demonstrating significant efficacy in suppressing carcinogenesis at various stages, including cell division, proliferation, apoptosis, inflammation, and metastasis. Furthermore, derivatives of a-Mangostin exhibit potential in addressing cancer-related ailments. This study aimed to investigate the binding interactions and dynamic behavior of a-Mangostin derivatives with the B-cell lymphoma 2 receptor (Bcl-2) through a comprehensive computational approach that combined molecular docking, molecular dynamics simulation, and ADMET prediction. The physicochemical and pharmacokinetic properties of a-Mangostin and its derivatives were predicted using the SWISS-ADME tool and the pkCSM web service, employing SMILES data as input. For molecular docking, the three-dimensional structure of Bcl-2 was utilized, and docking simulations were conducted using the Gnina software to explore the affinity and interaction of the derivatives with Bcl-2. Among the derivatives, derivative 6 displayed the most promising docking results, with a binding energy of -7.95 kcal/mol and significant p-Sigma interaction at the active site on the Tyr161 amino acid residue. Additionally, interactions such as conventional hydrogen bonds, carbon hydrogen bonds, p-cation, and alkyl were observed. To assess the stability and dynamic behavior of derivative 6 in the Bcl-2 complex, a 100-nanosecond molecular dynamics (MD) simulation was performed using GROMACS software. The results suggest that derivative 6 derived from a-Mangostin holds potential for oral drug development, highlighting its promise for future therapeutic applications based free energy calculation using molecular mechanics generalized born surface area (MM-GBSA).


Cite this article:
Regina Andayani, Ajuanda Puteri, Aiyi Asnawi, Purnawan Pontana Putra. In Silico Analysis of α-Mangostin Derivatives: Investigating Their Interaction with B-cell Lymphoma 2 (Bcl-2) Receptor. Research Journal of Pharmacy and Technology. 2025;18(7):3212-0. doi: 10.52711/0974-360X.2025.00462

Cite(Electronic):
Regina Andayani, Ajuanda Puteri, Aiyi Asnawi, Purnawan Pontana Putra. In Silico Analysis of α-Mangostin Derivatives: Investigating Their Interaction with B-cell Lymphoma 2 (Bcl-2) Receptor. Research Journal of Pharmacy and Technology. 2025;18(7):3212-0. doi: 10.52711/0974-360X.2025.00462   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-7-42


REFERENCES:
1.    Lazarus E. Bays HE. Cancer and Obesity: An Obesity Medicine Association (OMA) Clinical Practice Statement (CPS) 2022. Obes Pillars. 2022; 3: 100026. doi.org/10.1016/j.obpill.2022.100026
2.    Hafezi S. Rahmani M. Targeting bcl-2 in cancer: Advances, challenges, and perspectives. Cancers (Basel). 2021; 13(6): 1–13. doi.org/10.3390/cancers13061292
3.    Rachmi E. Purnomo BB. Endharti AT. Fitri LE. In silico prediction of anti-apoptotic bcl-2 proteins modulation by afzelin in mda-mb-231 breast cancer cell. Res J Pharm Technol. 2020; 13(2): 905–10. doi.org/10.5958/0974-360X.2020.00171.7
4.    Berke TP. Slight SH. Hyder SM. Role of Reactivating Mutant p53 Protein in Suppressing Growth and Metastasis of Triple-Negative Breast Cancer. Onco Targets Ther. 2022; 15: 23–30. doi.org/10.2147/OTT.S342292
5.    Kastenhuber ER. Lowe SW. Putting p53 in Context. Cell. 2017; 170(6): 1062–78. doi.org/10.1016/j.cell.2017.08.028
6.    Alam M. Rashid S. Fatima K. Adnan M. Shafie A. Akhtar MS. et al. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits. Biomed Pharmacother. 2023; 163. doi.org/10.1016/j.biopha.2023.114710
7.    Herdiana Y. Wathoni N. Shamsuddin S. Muchtaridi M. α-Mangostin nanoparticles cytotoxicity and cell death modalities in breast cancer cell lines. Molecules. 2021; 26(17): 1–16. doi.org/10.3390/molecules26175119
8.    Zhou W. Wu C. Wang J. Circular RNA circ_0000877 serves as a miR-671-5p sponge to regulate diffuse large B-cell lymphoma development via HK2. Mol Cell Toxicol. 2022; doi.org/10.1007/s13273-022-00292-4
9.    Lee HN. Jang HY. Kim HJ. Shin SA. Choo GS. Park YS. et al. Antitumor and apoptosis-inducing effects of α-mangostin extracted from the pericarp of the mangosteen fruit (Garcinia mangostana L.) in YD-15 tongue mucoepidermoid carcinoma cells. Int J Mol Med. 2016; 37(4): 939–48. doi.org/10.3892/ijmm.2016.2517
10.    Nalla LV. Dharavath A. Behera SK. Khairnar A. Alpha mangostin inhibits proliferation, migration, and invasion of human breast cancer cells via STAT3 inhibition. Adv Cancer Biol - Metastasis. 2023; 7. doi.org/10.1016/j.adcanc.2023.100089
11.    Zhu X. Li J. Ning H. Yuan Z. Zhong Y. Wu S. et al. α-Mangostin Induces Apoptosis and Inhibits Metastasis of Breast Cancer Cells via Regulating RXRα-AKT Signaling Pathway. Front Pharmacol. 2021; 12(August): 1–11. doi.org/10.3389/fphar.2021.739658
12.    Boyenle ID. Ogunlana AT. Kehinde Oyedele AQ. Olokodana BK. Owolabi N. Salahudeen A. et al. Reinstating apoptosis using putative Bcl-xL natural product inhibitors: Molecular docking and ADMETox profiling investigations. J Taibah Univ Med Sci. 2023; 18(3): 461–9. doi.org/10.1016/j.jtumed.2022.10.014
13.    Chi XQ. Zi CT. Li HM. Yang L. Lv YF. Li JY. et al. Design, synthesis and structure-activity relationships of mangostin analogs as cytotoxic agents. RSC Adv. 2018; 8(72): 41377–88. doi.org/10.1039/C8RA08409B
14.    Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7: 1–13. doi.org/10.1038/srep42717
15.    Pires DEV. Blundell TL. Ascher DB. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015; 58(9): 4066–72. doi.org/10.1021/acs.jmedchem.5b00104
16.    Waterhouse A. Bertoni M. Bienert S. Studer G. Tauriello G. Gumienny R. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46(W1):W296–303. doi.org/10.1093/nar/gky427
17.    Rahim F. Putra PP. Ismed F. Putra AE. Lucida H. Molecular Dynamics, Docking and Prediction of Absorption, Distribution, Metabolism and Excretion of Lycopene as Protein Inhibitor of Bcl2 and DNMT1. Trop J Nat Prod Res. 2023; 7(July): 3439–44. doi.org/10.26538/tjnpr/v7i7.23
18.    Touré BB. Miller-Moslin K. Yusuff N. Perez L. Doré M. Joud C. et al. The Role of the acidity of N-heteroaryl sulfonamides as inhibitors of Bcl-2 family protein-protein interactions. ACS Med Chem Lett. 2013; 4(2): 186–90. doi.org/10.1021/ml300321d
19.    McNutt AT. Francoeur P. Aggarwal R. Masuda T. Meli R. Ragoza M. et al. GNINA 1.0: molecular docking with deep learning. J Cheminform. 2021; 13(1): 1–20. doi.org/10.1186/s13321-021-00522-2
20.    Wang J. Wolf RM. Caldwell JW. Kollman PA. Case DA. Development and testing of a general Amber force field. J Comput Chem. 2004; 25(9): 1157–74. doi.org/10.1002/jcc.20035
21.    Eberhardt J. Santos-Martins D. Tillack AF. Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021; 61(8): 3891–8. doi.org/10.1021/acs.jcim.1c00203
22.    Trott O. Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2009; NA-NA. doi.org/10.1002/jcc.21334
23.    Hanwell MD. Curtis DE. Lonie DC. Vandermeerschd T. Zurek E. Hutchison GR. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J Cheminform. 2012; 4(8): 1–17. doi.org/10.1186/1758-2946-4-17
24.    Lindorff-Larsen K. Piana S. Palmo K. Maragakis P. Klepeis JL. Dror RO. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinforma. 2010;78(8):1950–8. doi.org/10.1002/prot.22711
25.    Sousa Da Silva AW. Vranken WF. ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes. 2012;5. doi.org/10.1186/1756-0500-5-367
26.    Gao Y. Lee J. Smith IPS. Lee H. Kim S. Qi Y. et al. CHARMM-GUI Supports Hydrogen Mass Repartitioning and Different Protonation States of Phosphates in Lipopolysaccharides. J Chem Inf Model. 2021;61(2):831–9. doi.org/10.1021/acs.jcim.0c01360
27.    Abraham MJ. Murtola T. Schulz R. Páll S. Smith JC. Hess B. et al. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015; 1–2: 19–25. doi.org/10.1016/j.softx.2015.06.001
28.    Kurniawan R. Taslim NA. Hardinsyah H. Syauki AY. Idris I. Aman AM. et al. Pharmacoinformatics and cellular studies of algal peptides as functional molecules to modulate type-2 diabetes markers. Futur Foods. 2024;9. doi.org/10.1016/j.fufo.2024.100354
29.    Valdés-Tresanco MS. Valdés-Tresanco ME. Valiente PA. Moreno E. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J Chem Theory Comput. 2021;17(10):6281–91. doi.org/10.1021/acs.jctc.1c00645
30.    Miller BR. McGee TD. Swails JM. Homeyer N. Gohlke H. Roitberg AE. MMPBSA.py: An efficient program for end-state free energy calculations. J Chem Theory Comput. 2012; 8(9): 3314–21. doi.org/10.1021/ct300418h
31.    Lipinski CA. Lombardo F. Dominy BW. Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012; 64(SUPPL.): 4–17. doi.org/10.1016/j.addr.2012.09.019
32.    Morris GM. Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008; 443(1): 365–82. doi.org/10.1007/978-1-59745-177-2_19
33.    Gaohua L. Zhang M. Sychterz C. Chang M. Schmidt BJ. The Interplay of Permeability, Metabolism, Transporters, and Dosing in Determining the Dynamics of the Tissue/Plasma Partition Coefficient and Volume of Distribution—A Theoretical Investigation Using Permeability-Limited, Physiologically Based Pharmacokin. Int J Mol Sci. 2023; 24(22): 16224. doi.org/10.3390/ijms242216224
34.    Putra PP. Asnawi A. Hamdayuni F. Arfan. Aman LO. Pharmacoinformatics Analysis of Morus macroura for Drug Discovery and Development. Int J Appl Pharm. 2024; 16(Special Issue 1): 111–7. doi.org/10.22159/ijap.2024.v16s1.26
35.    Sandoval PJ. Zorn KM. Clark AM. Ekins S. Wright SH. Assessment of substrate-dependent ligand interactions at the organic cation transporter OCT2 using six model substrates s. Mol Pharmacol. 2018; 94(3): 1057–68. doi.org/10.1124/mol.117.111443
36.    Suharti N. Sari MR. Dillasamola D. Putra PP. In Silico and In Vitro Study of The Ethanol Extract of The White Garland Lily (Hedychium coronarium J. Koenig) as a Tyrosinase Inhibitor. Trop J Nat Prod Res. 2023; 7(6): 3125–9. doi.org/10.26538/tjnpr/v7i6.9
37.    Hemalatha K. Selvin J. Girija K.  Synthesis, In silico Molecular Docking Study and Anti-bacterial Evaluation of some Novel 4-Anilino Quinazolines. Asian J Pharm Res. 2018; 8(3): 125. doi.org/10.5958/2231-5691.2018.00022.9
38.    Hemalatha K. Girija K. Evaluation of Drug Candidature of some Benzimidazole Derivatives as Biotin Carboxylase Inhibitors: Molecular docking and Insilico studies. Asian J Res Pharm Sci. 2016; 6(1): 15. doi.org/10.5958/2231-5659.2016.00002.3
39.    Devgan M. Homology modeling and molecular docking studies of DNA replication licensing factor minichromosome maintenance protein 5 (MCM5). Asian J Pharm Technol. 2015; 5(1): 17. doi.org/10.5958/2231-5713.2015.00004.5
40.    Pawar S. Kulkarni C. Gadade P. Pujari S. Kakade S. Rohane SH. et al. Molecular Docking using different Tools. Asian J Pharm Res. 2023; Nov 22; 292–6. doi.org/10.52711/2231-5691.2023.00053
41.    Chauhan R. Singh N. Abraham J.  Bioactivity and Molecular Docking of Secondary Metabolites produced by Streptomyces xanthochromogenes JAR5. Res J Pharm Technol. 2015; 8(3): 300. doi.org/10.5958/0974-360x.2015.00050.5
42.    Shanmugapriya E. Ravichandiran V. Aanandhi MV. Molecular docking studies on naturally occurring selected flavones against protease enzyme of dengue virus. Res J Pharm Technol. 2016; 9(7):929–32. doi.org/10.5958/0974-360X.2016.00178.5
43.    Kumar L. Verma R. Molecular docking based approach for the design of novel flavone analogues as inhibitor of beta-hydroxyacyl-ACP dehydratase HadAB complex. Res J Pharm Technol. 2017; 10(8): 2439–45. doi.org/10.5958/0974-360X.2017.00431.0
44.    Kesavan K. Jayanthi S. Structure based virtual screening and molecular dynamics studies to identify novel APE1 inhibitor from seaweeds as anti-glioma agent. Res J Pharm Technol. 2017; 10(8): 2474–8. doi.org/10.5958/0974-360X.2017.00437.1
45.    Anbarasu K. Senthilkumar D. Jayanthi S. Deciphering the impact of R324l mutation in polycystin-1PKD domain associated with autosomal dominant polycystic kidney disease (ADPKD): A molecular dynamics perspective. Res J Pharm Technol. 2017; 10(9): 3089–94. doi.org/10.5958/0974-360X.2017.00548.0
46.    Hussain S. Iqbal A. Hamid S. Putra PP. Ashraf M. Identifying alkaline phosphatase inhibitory potential of cyclooxygenase-2 inhibitors: Insights from molecular docking, MD simulations, molecular expression analysis in MCF-7 breast cancer cell line and in vitro investigations. Int J Biol Macromol. 2024; May; 6(1): 132721. doi.org/10.1016/j.ijbiomac.2024.132721
47.    Putra PP. Indradi RB. Yuniarta TA. Hanifa D. Suharti N. Computational investigation of Pluchea indica mechanism targeting peroxisome proliferator-activated receptor gamma. J HerbMed Pharmacol. 2024; 13(4): 630–9. doi.org/10.34172/jhp.2024.52544

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available