Author(s): Jayasree Komara, Jaya Prasanthi Karumuri, Alluraiah Gurrala, Lakshmi Thalabathula

Email(s): jayasreekomara.rs@andhrauniversity.edu.in , dr.kjprasanthi@andhrauniversity.edu.in , galluraiah@gmail.com , thalabathulalakshmi@gmail.com

DOI: 10.52711/0974-360X.2025.00461   

Address: Jayasree Komara1, Jaya Prasanthi Karumuri2, Alluraiah Gurrala3, Lakshmi Thalabathula4
1Department of Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh India.
2Department of Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh India.
3S.V. Arts and Science College, Gudur, Andhra Pradesh India.
4Department of Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 7,     Year - 2025


ABSTRACT:
This article describes the preparation, characterisation and catalytical activity of a Bimetallic Metal Organic Framework (Cu-Ni-EDTA). As a catalyst, Cu-Ni-EDTA Bimetallic MOF (BMOF) was used to reduce a three variety of nitro aromatic compounds (NACs), which includes 4-Nitrophenol (4-NP), 2-Nitroaniline (2-NA) and 4-Nitroaniline (4-NA). Various approaches like Brunauer-Emmett-Teller (BET), X-ray Photoelectron Spectroscopy (XPS), Powder X-ray Diffraction (PXRD), Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (FESEM-EDS), Thermogravimetric Analysis (TGA) and Fourier Transform Infrared Spectroscopy (FT-IR) were employed to examine the BMOF, revealing that the BMOF has distinct shape, crystallinity, high surface area, improved thermal stability, existence of open pores on the surface of the structure. The BMOF has reduced the 2-Nitroaniline and 4-Nitroaniline in 120 seconds with 94.31% and 95.69% of percentage of reduction respectively, whereas the BMOF took 180 seconds to reduce the 4-Nitrophenol with 98.51% of percentage of reduction in the presence of sodium borohydride, demonstrating that the BMOF has strong catalytic activity towards the aforementioned three nitro aromatic compounds. Since BMOF is non-toxic, inexpensive and follows the principles of green chemistry, it can be applied to wastewater treatment.


Cite this article:
Jayasree Komara, Jaya Prasanthi Karumuri, Alluraiah Gurrala, Lakshmi Thalabathula. Reduction of nitroaromatic compounds using Cu-Ni-EDTA bimetallic MOF: An exceptionally quick and reliable approach. Research Journal of Pharmacy and Technology. 2025;18(7):3204-1. doi: 10.52711/0974-360X.2025.00461

Cite(Electronic):
Jayasree Komara, Jaya Prasanthi Karumuri, Alluraiah Gurrala, Lakshmi Thalabathula. Reduction of nitroaromatic compounds using Cu-Ni-EDTA bimetallic MOF: An exceptionally quick and reliable approach. Research Journal of Pharmacy and Technology. 2025;18(7):3204-1. doi: 10.52711/0974-360X.2025.00461   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-7-41


REFERENCES:
1.    Zhou HCJ. Kitagawa S. Metal–Organic Frameworks (MOFs). Chem. Soc. Rev. 2014; 43: 5415-5418. https://doi.org/10.1039/C4CS90059F.
2.    Barthel S. Alexandrov EV. Proserpio DM. Smit B. Distinguishing Metal–Organic Frameworks. Cryst. Growth Des. 2018; 18 (3):1738–1747. https://doi.org/10.1021/acs.cgd.7b01663.
3.    Kitagawa S. Kitaura R. Noro Si.  Functional Porous Coordination Polymers. Angew. Chem. Int. Ed. 2004; 43 (18): 2334–2375. https://doi.org/10.1002/anie.200300610.
4.    Furukawa H. Cordova KE. O'Keeffe M. Yaghi OM. The Chemistry and Applications of Metal-Organic Frameworks. Science. 2013; 341: 974–986. https://doi.org/10.1126/science.1230444.
5.    Chen L. Xu Q. Metal-Organic Framework Composites for Catalysis. Matter. 2019; 1: 57–89. https://doi.org/10.1016/j.matt.2019.05.018. 
6.    Simon-Yarza T. Mielcarek A. Couvreur P. Serre C. Nanoparticles of Metal-Organic Frameworks: On the Road to In Vivo Efficacy in Biomedicine. Adv. Mater. 2018; 30: 1707365. https://doi.org/10.1002/adma.201707365. 
7.    Lu K. Aung T. Guo N. Weichselbaum R. Lin W. Nanoscale Metal–Organic Frameworks for Therapeutic, Imaging, and Sensing Applications. Adv. Mater. 2018; 30: 1707634. https://doi.org/10.1002/adma.201707634. 
8.    Li H. Li L. Lin R.B. Zhou W. Zhang Z. Xiang S. Chen B. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem. 2019; 1: 100006. https://doi.org/10.1016/j.enchem.2019.100006.
9.    Woellner M. Hausdorf S. Klein N. Mueller P. Smith MW. Kaskel S. Adsorption and Detection of Hazardous Trace Gases by Metal–Organic Frameworks. Adv. Mater. 2018; 30: 1704679. https://doi.org/10.1002/adma.201704679.  
10.    Burrows AD. Mixed-component metal–organic frameworks (MC-MOFs): enhancing functionality through solid solution formation and surface modifications. CrystEngComm. 2011; 13: 3623–3642. https://doi.org/10.1039/C0CE00568A.
11.    Masoomi MY. Morsali A. Dhakshinamoorthy A. Garcia H. Mixed-Metal MOFs: Unique Opportunities in Metal–Organic Framework (MOF) Functionality and Design. Angew. Chem. Int. Ed. 2019; 58: 15188–15205. https://doi.org/10.1002/anie.201902229. 
12.    Feng L. Wang KY. Day GS. Zhou HC. The chemistry of multi-component and hierarchical framework compounds. Chem. Soc. Rev. 2019; 48:4823–4853. https://doi.org/10.1039/C9CS00250B.
13.    Rice AM. Leith GA. Ejegbavwo OA. Dolgopolova EA. Shustova NB. Heterometallic Metal–Organic Frameworks (MOFs): The Advent of Improving the Energy Landscape. ACS Energy Lett. 2019; 4: 1938–1946. https://doi.org/10.1021/acsenergylett.9b00874.
14.    Dhakshinamoorthy A. Asiri AM. Garcia H. Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts. Catal. Sci. Technol. 2016; 6: 5238–5261. https://doi.org/10.1039/C6CY00695G.
15.    Simiyu LN. Nthiga EW. Activated carbon from macadamia nutshells for removal of p-Nitrophenol from real wastewater: Thermodynamic evaluation. Asian Journal of Research in Chemistry. 2024; 17 (3): 127-3. https://doi.org/10.52711/0974-4150.2024.00024.
16.    Keyte IJ. Albinet A. Harrison RM. On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy-and nitro-derivative compounds measured in road tunnel environments. Sci. Total Environ. 2016; 566: 1131–1142. https://doi.org/10.1016/j.scitotenv.2016.05.152.
17.    Blakey DH. Maus KL. Bell R. Bayley J. Douglas GR. Nestmann ER. Mutagenic activity of 3 industrial chemicals in a battery of in vitro and in vivo tests. Mutat. Res.-Gen. Tox. 1994; 320 (4): 273–283. https://doi.org/10.1016/0165-1218(94)90080-9.
18.    Naseem K. Begum R. Farooqi ZH. Catalytic reduction of 2-nitroaniline: a review. Envi. Sci. Pollu. Res. 2017; 24: 6446-6460. https://link.springer.com/article/10.1007/s11356-016-8317-2.
19.    Silambarasana S. Vangnai AS. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites. J. Haz. Mat. 2016; 302:426-436. https://doi.org/10.1016/j.jhazmat.2015.10.010.
20.    James N. Mwangi IW. Wanjau RN. Murungi JI. Adsorption studies of p-Nitrophenol from Model aqueous solutions using Raw and Quaternised thorn melon (Cucumis metuliferus) peels. Asian Journal of Research in Chemistry. 2021; 14(1):1-6. https://doi.org/10.5958/0974-4150.2021.00001.8.
21.    Abdelhamid HN. High Performance and Ultrafast Reduction of 4-Nitrophenol using Metal-Organic Frameworks. J. Envi. Chem. Eng. 2021; 9 (1): 104404. https://doi.org/10.1016/j.jece.2020.104404.
22.    Yan J. Li J. Liu P. Huang H. Song W. Enhanced ammonia selectivity on electrochemical nitrate reduction: Cu–Ni metal–organic frameworks with tandem active sites for cascade catalysis. Green Chem. 2023; 25: 8645-8651. https://doi.org/10.1039/D3GC02613B.
23.    Guo G. Direct fabrication of mixed metal–organic frameworks (Ni/Cu-MOF) and C@NiCu2O4 onto Ni foam as binder-free high performance electrode for supercapacitors. J. Mater. Sci: Mater. Electron. 2021; 32: 16287-16301. https://doi.org/10.1007/s10854-021-06177-x.
24.    Gopi S. Al-Mohaimeed AM. Al-onazi WA. Elshikh MS. Yun K. Metal organic framework-derived Ni-Cu bimetallic electrocatalyst for efficient oxygen evolution reaction. J. King Saud Univ.-Sci. 2021; 33 (3): 101379. https://doi.org/10.1016/j.jksus.2021.101379.
25.    Momin S. Mahmood T. Ullah A. Naeem A. Khan A. Facile Synthesis of Cu–Zn Bimetallic MOF: Application as Superior Adsorbent for Effective Removal of Methylene Blue from Aqueous Solutions. Arab. J. Sci. Eng. 2024; 49: 9269-9290. https://doi.org/10.1007/s13369-023-08571-5.
26.    Sawyer DT. Paulsen PJ. Properties and Infrared Spectra of Ethylenediaminetetraacetic Acid Complexes. II. Chelates of Divalent Ions. J. Am. Chem. Soc. 1959; 81 (4): 816-820. https://doi.org/10.1021/ja01513a017.
27.    Manimekalai R. Raja CR. EDTA effect on Copper Sulphate Penta Hydrate-A NLO Material. Inte. Rese. J. Pure Appl. Chem. 2013; 3 (4):391-403. https://doi.org/10.9734/IRJPAC/2013/5299. 
28.    Richardson JT. Scates R. Twigg MV. X-ray diffraction study of nickel oxide reduction by hydrogen. Applied Catalysis A: General. 2003; 246 (1): 137-150. https://doi.org/10.1016/S0926-860X(02)00669-5
29.    Yang C. Xue W. Yin H. Lu Z. Wang A. Shen L. Jiang Y. Hydrogenation of 3-nitro-4-methoxy-acetylaniline with H2 to 3-amino-4-methoxy-acetylaniline catalyzed by bimetallic copper/nickel nanoparticles. New J. Chem. 2017; 41: 3358-3366. https://doi.org/10.1039/C7NJ00066A.
30.    Wu G. Wang X. Chen B. Li JP. Zhao N. Wei W. Sun Y. Fluorine-modified mesoporous Mg–Al mixed oxides: Mild and stable base catalysts for O-methylation of phenol with dimethyl carbonate. Appl. Catal. A. 2007; 329: 106–111. https://doi.org/10.1016/j.apcata.2007.06.031.
31.    Shahzaib A. Shaily. Ahmad I. Singh P. Zafar F. Akhtar Y. Bukhari AA. Nishat N. Ultrarapid and highly efficient reduction of nitroaromatic compounds using cyclodextrin MOF. Catal. Comm. 2023; 174: 106569. https://doi.org/10.1016/j.catcom.2022.106569.
32.    Wang R. Cai C. Wang D. Liu Z. Gao L. Jiao T. Self-assembled Au/Fe3O4 nanoparticle-loaded phytic acid-graphene oxide composite foam with highly efficient catalytic performance for p-nitrophenol and o-nitroaniline organic pollutants. Colloids Surf. A Physicochem. Eng. Asp. 2021; 617: 126368. https://doi.org/10.1016/j.colsurfa.2021.126368.
33.    Ahmad I. Manzoor K. Aalam G. Amir M. Ali SW. Ikram S. Facile synthesis of L-Tryptophan Functionalized Magnetic Nanophotocatalyst Supported by Copper Nanoparticles for Selective Reduction of Organic Pollutants and Degradation of Azo Dyes. Catal. Lett. 2023; 153: 2604-2623. https://doi.org/10.1007/s10562-022-04182-1. 

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available