ABSTRACT:
Heavy metals are toxic and can cause a variety of health problems in humans and animals. They affect the natural environment in addition to the wide range of soil fauna. Effective management of heavy metal concentrations can be achieved through the inoculation of earthworms in their habitats. Lampito mauritii, an anecic species of earthworm, is known for its ability to accumulate heavy metals in its body yellow tissues. In the present research, we examined the concentrations of heavy metals in various combinations of animal dung with kitchen waste (KW) in the feed mixture that was initially prepared, in the final vermicompost, and in the earthworm's body tissues. During the earthworm, Lampito mauritii vermicomposting process, a significant decrease in the levels of heavy metals, including cobalt (Co), nickel (Ni), and cadmium (Cd), was observed in all combinations of animal dung mixed with kitchen waste (KW). The concentration of Co and Ni was significantly increased (2.71% and 12.40%) in earthworm Lampito mauritii body (6.915 ± 0.004 and 7.120 ± 0.005 mg/kg) when treated in the combination of BD+KW (1:3) and BD+KW in 1:1 ratio respectively. Whereas, the concentration of Cd was maximum accumulated in the body tissue of earthworms from the combination of goat dung (0.42%, 61.899 ± 0.005 mg/kg). The results show that Lampito mauritii functions as a biological indicator and significantly decreases the number of heavy metals in the final vermicompost during vermicomposting processes. This method not only facilitates the effective management of kitchen waste but also mitigates the risk of heavy metal contamination in the human diet.
Cite this article:
Nishat Fatima, Keshav Singh. Potential of Earthworm Lampito mauritii in Vermiremediation of Heavy Metals (Co, Ni and Cd) from Different Combinations of Animal Dung with Kitchen Wastes. Research Journal of Pharmacy and Technology. 2025;18(7):3196-3. doi: 10.52711/0974-360X.2025.00460
Cite(Electronic):
Nishat Fatima, Keshav Singh. Potential of Earthworm Lampito mauritii in Vermiremediation of Heavy Metals (Co, Ni and Cd) from Different Combinations of Animal Dung with Kitchen Wastes. Research Journal of Pharmacy and Technology. 2025;18(7):3196-3. doi: 10.52711/0974-360X.2025.00460 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-7-40
REFERENCES:
1. Kumar A, Ali A, Verma Y, Robin N, Patel A, Deb P, Maurya D. Making Vermicompost from Kitchen Waste with Vermicomposting Technology. International Journal of Plant and Soil Science. 2023; 35(13): 230–234. doi:10.9734/ijpss/2023/v35i133009
2. Kaware DH, Kolhe SN, Tiwari AV. Kitchen Waste Management - A Review. International Engineering Journal for Research and Development. 2021;6:1-6.
3. Sharholy M, Ahmad K, Mahmood G, Trivedi R. Municipal solid waste management in Indian cities – A review. Waste Management. 2008; 28(2): 459–467. doi:10.1016/j.wasman.2007.02.008
4. Singh H, Singh P, Hundal SS. Vermicomposting of animal dung and its laboratory evaluation. Indian Journal of Science and Technology. 2012; 5(7): 3031–3035. doi:10.17485/ijst/2012/v5i7/30507
5. Sharma RK, Agrawal M, Marshall F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety. 2007; 66(2): 258–266. doi:10.1016/j.ecoenv.2005.11.007
6. Tiwari KK, Singh NK, Patel MP, Tiwari MR, Rai UN. Metal contamination of soil and translocation in vegetables growing under industrial wastewater irrigated agricultural field of Vadodara, Gujarat, India. Ecotoxicology and Environmental Safety. 2011; P74(6): 1670–1677. doi:10.1016/j.ecoenv.2011.04.029
7. Gupta N, Yadav KK, Kumar V, Prasad S, Cabral-Pinto MMS, Jeon B, Kumar S, Abdellattif MH, Alsukaibia AKD. Investigation of heavy metal accumulation in vegetables and health risk to humans from their consumption. Frontiers in Environmental Science. 2022;10. doi:10.3389/fenvs.2022.791052
8. Hait M, Patel A, Rajput CS. Heavy metal levels in selected leafy vegetables obtained from Local market of Dharmjaigarh, Chhattisgarh, India. Asian Journal of Research in Chemistry. 2017; 10(3): 354. doi:10.5958/0974-4150.2017.00060.8
9. Hu H. Human Health and Heavy Metals Exposure. In: M. McCally, Ed., Life Support: The Environment and Human Health, MIT Press, Cambridge. 2002; 65-81.
10. Li S, Zou D, Li L, Wu L, Liu F, Zeng X, Wang H, Zhu Y, Xiao Z. Evolution of heavy metals during thermal treatment of manure: A critical review and outlooks. Chemosphere. 2020; 247: 125962. doi:10.1016/j.chemosphere.2020.125962
11. Sulistyowati L, Nurhasanah N, Riani E, Cordova M. Heavy metals concentration in the sediment of the aquatic environment caused by the leachate discharge from a landfill. Global Journal of Environmental Science and Management. 2023;9(2):323-336.
12. Fatima N, Singh A, Singh PK, Pandey AK, Singh K. Heavy Metals in the Environment: Bioremediation Technique Utilizing Earthworms for Remediating Heavy Metal-Contaminated Soil. International Journal of Zoological Investigations. 2024; 10(2): 387-409. doi:10.33745/ijzi.2024.v10i02.037
13. Purushothaman V, Madhumathi R, Sakthiselvan P. Removal of Nickel (II) and Zinc (II) present in the Electroplating Industry Wastewater by Bioaccumulation Method. Research Journal of Pharmacy and Technology. 2019; 12(4): 1495. doi:10.5958/0974-360x.2019.00247.6
14. Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry. 2019; 1–14. doi:10.1155/2019/6730305
15. Mbonu OF, Udeozor AP, Obinna OB. Determination of Some Heavy Metal Pollutants In Conydors semiaquilus and Oreochromis niloticus Samples from Ndibe Beach at Afikpo North Local Government Area, Afikpo of Ebonyi State Nigeria. Research Journal of Science and Technology. 2017; 9(2): 224. doi:10.5958/2349-2988.2017.00039.0
16. Scutarașu EC, Trincă LC. Heavy metals in foods and beverages: global situation, health risks and reduction methods. Foods. 2023; 12(18): 3340. doi:10.3390/foods12183340
17. Shukla L, Jain N. A review on soil heavy metals contamination: Effects, sources and remedies. Asian Journal of Research in Chemistry. 2020; 13(4): 299. doi:10.5958/0974-4150.2020.00058.9
18. Khan S, Reid BJ, Li G, Zhu Y. Application of biochar to soil reduces cancer risk via rice consumption: A case study in Miaoqian village, Longyan, China. Environment International. 2014; 68: 154–161. doi:10.1016/j.envint.2014.03.017
19. Martorell I, Perelló G, Martí-Cid R, Llobet JM, Castell V, Domingo J L. Human Exposure to Arsenic, Cadmium, Mercury, and Lead from Foods in Catalonia, Spain: Temporal Trend. Biological Trace Element Research. 2010; 142(3): 309–322. doi:10.1007/s12011-010-8787-x
20. Saha A, Roy S. Harmful effects of different classes of heavy metals in our beautiful environment. Asian Journal of Research in Chemistry. 2023; 13-17. doi:10.52711/0974-4150.2023.00003
21. Domingo JL. Cobalt in the environment and its toxicological implications. Reviews of Environmental Contamination and Toxicology. 1989; 105–132. doi:10.1007/978-1-4613-8850-0_3
22. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human Health and Environmental Toxicology. International Journal of Environmental Research and Public Health. 2020; 17(3): 679. doi:10.3390/ijerph17030679
23. Tellez-Plaza M, Navas-Acien A, Crainiceanu CM, Guallar E. Cadmium exposure and hypertension in the 1999–2004 National Health and Nutrition Examination Survey (NHANES). Environmental Health Perspectives. 2008; 116(1): 51-56. doi:10.1289/ehp.10764
24. Schwartz GG, Il’yasova D, Ivanova A. Urinary cadmium, impaired fasting glucose, and diabetes in the NHANES III. Diabetes Care. 2003; 26(2): 468–470. doi:10.2337/diacare.26.2.468
25. Peters JL, Perlstein TS, Perry MJ, McNeely E, Weuve J. Cadmium exposure in association with history of stroke and heart failure. Environmental Research. 2010; 110(2): 199–206. doi:10.1016/j.envres.2009.12.004
26. Singh K, Singh V, Singh RN. Effect of vermic-activity of earthworm Eisenia fetida on the physico-chemical texture of biological wastes. Research Journal of Science and Technology. 2017; 9(2): 277. doi:10.5958/2349-2988.2017.00050.x
27. Fatima N, Singh K. Accumulation of heavy metals in soil: sources, toxicity, health impacts, and remediation by earthworms. European Journal of Biological Research. 2023a; 13(3): 129-143. doi:10.5281/zenodo.8206486
28. Singh PK, Singh A, Fatima N, Singh K. Vermicomposting: An Ecofriendly Approach towards Solid Waste Management. Munis Entomology and Zoology. 2024; 19(2): 749-770.
29. Singh K, Nath S. The combinations of vermiwash with bio-pesticides- A boon for crop productivity. Res. J. Pharmacognosy and Phytochem. 2016; 8(3): 172-202.
30. Baligah HU, Chesti MH, Baba ZA, Mir S, Wani FJ, Bhat JA, Khan IM. Vermicomposting technology as a dynamic strategy to mitigate environmental crisis: a bibliometric study of last three decades. Environmental Technology. 2024; 1–15. doi:10.1080/09593330.2024.2339191
31. Sharma D. Kitchen waste management by vermicomposting using locally available epigeic earthworm species. Journal of Applied and Natural Science. 2019; 11(2): 372–374. doi:10.31018/jans.v11i2.2058
32. Sinha RK, Agarwal S, Chauhan K, Chandran V, Soni BK. Vermiculture Technology: Reviving the dreams of Sir Charles Darwin for scientific use of earthworms in sustainable development programs. Technology and Investment. 2010; 01(03): 155–172. doi:10.4236/ti.2010.13019
33. Hamidian AH, Zareh M, Poorbagher H, Vaziri L, Ashrafi S. Heavy metal bioaccumulation in sediment, common reed, algae, and blood worm from the Shoor river, Iran. Toxicology and Industrial Health. 2013; 32(3): 398–409. doi:10.1177/0748233713500835
34. Singh K, Fatima N. The Efficiency of Earthworms as a Biomarker for Environmental Pollution. International Journal of Biological Innovations. 2022; 04(01): 104–112. doi:10.46505/ijbi.2022.4111
35. Bhat SA, Singh S, Singh J, Kumar S, Bhawana N, Vig AP. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture. Bioresource Technology. 2018; 252: 172–179. doi:10.1016/j.biortech.2018.01.003
36. Debnath S, Chaudhuri P. Earthworm communities in the waste deposit sites (Cowdung heaps and municipal solid wastes) of West Tripura, India. International Journal of Ecology and Environmental Sciences. 2019; 45(1): 1–14.
37. Deivanayaki M. Comparative Study of growth, Cocoon production and Hatching success of Lampito mauritii and Periyonix excavatus cultured in different Water Hyacinth Media. Research Journal of Science and Technology. 2018; 10(3): 201. doi:10.5958/2349-2988.2018.00028.1
38. Periyasamy M, Christobher S, Suganthi P, Sahith SSU. Analysis of Vermicomposting Properties of Lampito mauritii Collected from selected areas of Tiruchirappalli district, Tamil Nadu. International Journal of Research. 2016; 3(01): 190-196.
39. Bhartiya DK, Singh K. Heavy Metals Accumulation from Municipal Solid Wastes with Different Animal Dung Through Vermicomposting by Earthworm Eisenia fetida. World Applied Sciences Journal. 2012;133–139.
40. Maboeta M. Vermicomposting of industrially produced wood chips and sewage sludge utilizing Eisenia foetida. Ecotoxicology and Environmental Safety. 2003; 56: 265-270.
41. Katz SA, Jenneis SW. Regulatory compliance monitory by atomic absorption spectroscopy. Verlay Chemical International, fl. 1983.
42. Sokal RR, Rohlf FJ. Introduction of biostatics. W.H. Freeman. San Francisco. 1973.
43. Singh K, Chauhan HK. Effect of Different Combinations of Feed Materials on the Reproduction and Development of Earthworm Eisenia fetida during Vermicomposting. Research Journal of Science and Technology. 2015; 7(1): 19. doi:10.5958/2349-2988.2015.00004.2
44. Suthar S, Singh S, Dhawan S. Earthworms as bioindicator of metals (Zn, Fe, Mn, Cu, Pb, and Cd) in soils: Is metal bioaccumulation affected by their ecological category? Ecological Engineering. 2008; 32(2): 99–107. doi:10.1016/j.ecoleng.2007.10.003
45. Singh K, Fatima N. Role of earthworms in heavy metal accumulation. Biospectra. 2019; 14(2): 21-36.
46. Govindarajan B, Vigneeswaran MV, Rameshkumar G, Prabakaran V. Bioaccumulation Studies of Heavy Metal on Impact towards Polluted Soil Using Earthworm Lampito mauritii and Eisenia fetida. Journal of Ecobiotechnology. 2011; 2(11): 06-12.
47. Liu J, Lu Z, Yang J, Xing M, Yu F, Guo M. Effect of earthworms on the performance and microbial communities of excess sludge treatment process in vermifilter. Bioresource Technology. 2012; 117: 214–221. doi:10.1016/j.biortech.2012.04.096
48. Sun F, Yu G, Zhao X, Polizzotto ML, Shen Y, Zhou H, Zhang X, Zhang J, He X. Mechanisms of potentially toxic metal removal from biogas residues via vermicomposting revealed by synchrotron radiation-based spectromicroscopies. Waste Management. 2020; 113: 80–87. doi:10.1016/j.wasman.2020.05.036
49. Chen X, Gu X, Zhao X, Ma X, Pan Y, Wang X, Ji R. Species-dependent toxicity, accumulation, and subcellular partitioning of cadmium in combination with tetrabromobisphenol A in earthworms. Chemosphere. 2018; 210: 1042–1050. doi:10.1016/j.chemosphere.2018.07.106
50. Fatima N, Singh K. Accumulation of Heavy Metals from the Combination of Different Biological Wastes by Earthworm Lampito mauritii Kinberg. International Journal of Zoological Investigations. 2023b; 9(1): 257–271. doi:10.33745/ijzi.2023.v09i01.030
51. Singh K, Bhartiya DK, Chauhan HK, Rai R, Singh RN. Bioaccumulation of Cobalt and Lead by Earthworm Eisenia fetida from Sewage sludge with different cattle dung during Vermicomposting. Research Journal of Science and Technology. 2014; 6(4): 175–179.
52. Yan Z, Wang B, Xie D, Zhou Y, Guo G, Xu M, Bai L, Hou H, Li F. Uptake and toxicity of spiked nickel to earthworm Eisenia fetida in a range of Chinese soils. Environmental Toxicology and Chemistry. 2011; 30(11): 2586–2593. doi:10.1002/etc.657
53. Latif R, Malek M, Mirmonsef H. Cadmium and lead accumulation in three endogeic earthworm species. Bulletin of Environmental Contamination and Toxicology. 2013; 90(4): 456–459. doi:10.1007/s00128-012-0941-z
54. Singh K, Bhartiya DK, Chauhan HK, Rai R, Singh RN. Bioaccumulation of Cobalt and Lead by Earthworm Eisenia fetida from Sewage sludge with different cattle dung during Vermicomposting. Research J. Science and Tech. 2014; 6(4): 175-179.