Author(s): Ruchi Yadav

Email(s): ryadav@lko.amity.edu

DOI: 10.52711/0974-360X.2025.00446   

Address: Ruchi Yadav*
Amity Institute of Biotechnology, Amity University, Uttar Pradesh, Lucknow Campus, Lucknow U.P., India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 7,     Year - 2025


ABSTRACT:
Focal cortical dysplasia (FCD) is neurodevelopmental disorder that is caused during the embryo development. In this disorder neurons in brain are not formed properly and it is deformed. FCD is malformation of cortical development and it is main cause of epilepsy it is also called as neuronal migration disorder. Recent research have shown that FCD is the main cause of epilepsy in children that can occur due to genetic factors or environmental factors. The current study was carried out to identify the potential drug, target protein was identified from the pathway analysis of Focal cortical dysplasia. Bioinformatics databases and tools were used for the screening of drug that shows binding with the target protein. Pathway analysis of tuberin protein by Reactome database and KEGG database. Homology modeling of tuberin protein was done using Swiss Model and result shows that Tuberin protein was modeled with 92.6% of residues in favored region (~98.0% expected) analyzed using Ramachandran plot. The molecular docking interaction was also studied by the Schrodinger software’s suite. The modeled protein structure of Tuberin protein was docked against Topiramate and Levetiracetam. The best interaction of Tuberin protein was identified with the Topiramate drug with the glide score -8.4kcal/mol. Therefore, the Topiramate was found potential drug as a potential inhibitor that shows interaction with tuberin protein have function in FCD.


Cite this article:
Ruchi Yadav. Exploring Pathway for the Identification of Potential Ligands against Focal Cortical Dysplasia. Research Journal of Pharmacy and Technology. 2025;18(7):3105-9. doi: 10.52711/0974-360X.2025.00446

Cite(Electronic):
Ruchi Yadav. Exploring Pathway for the Identification of Potential Ligands against Focal Cortical Dysplasia. Research Journal of Pharmacy and Technology. 2025;18(7):3105-9. doi: 10.52711/0974-360X.2025.00446   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-7-26


6. REFERENCES:
1.    Bellugi U. Bihrle A. Neville H. Doherty S. Jernigan T. Gunnar M. Nelson C. Language, cognition, and brain organization in a neurodevelopmental disorder. Developmental Behavioral Neuroscience: The Minnesota Symposia on Child Psychology. 1992; 24: 201-32. doi.org/10.1037/10555-007
2.    Kabat J. Król P. Focal cortical dysplasia – review. Polish Journal of Radiology. 2012; 77(2): 35. doi.org/10.12659/PJR.883460
3.    Tassi L. Colombo N. Garbelli R. Francione S. Lo Russo G. Mai R. et al. Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain. 2002; 125(8): 1719-32. doi.org/10.1093/brain/awf175
4.    Narava SSS. Kucherlapati S. Mugada VK. Yarguntla SR. A Review on Rett Syndrome: A Debilitating Neurodevelopmental Disorder. Research Journal of Pharmacology and Pharmacodynamics. 2023; 15(4): 159-64. doi.org/10.52711/2321-5836.2023.00026
5.    Cohen-Gadol AA. Özduman K. Bronen RA. Kim JH. Spencer DD. Long-term outcome after epilepsy surgery for focal cortical dysplasia. Journal of Neurosurgery. 2004; 101(1): 55-65. doi.org/10.3171/jns.2004.101.1.0055
6.    Crino PB. Focal cortical dysplasia. Seminars in Neurology. 2015; 35(3): 201. doi.org/10.1055/s-0035-1552616
7.    Sisodiya SM. Lin WR. Squier MV. Thom M. Multidrug-resistance protein 1 in focal cortical dysplasia. The Lancet. 2001; 357(9249): 42-3.doi.org/10.1016/S0140-6736(00)03535-9
8.    Fauser S. Huppertz HJ. Bast T. Strobl K. Pantazis G. Altenmueller DM. et al. Clinical characteristics in focal cortical dysplasia: a retrospective evaluation in a series of 120 patients. Brain. 2006; 129(7): 1907-16. doi.org/10.1093/brain/awl137
9.    Sisodiya SM. Fauser S. Cross JH. Thom M. Focal cortical dysplasia type II: biological features and clinical perspectives. The Lancet Neurology. 2009; 8(9): 830-43.  
10.    Krsek P. Pieper T. Karlmeier A. Hildebrandt M. Kolodziejczyk D. Winkler P. et al. Different presurgical characteristics and seizure outcomes in children with focal cortical dysplasia type I or II. Epilepsia. 2009; 50(1): 125-37.doi.org/10.1111/j.1528-1167.2008.01709.x
11.    Hong SJ. Bernhardt BC. Caldairou B. Hall JA. Guiot MC. Schrader D. et al. Multimodal MRI profiling of focal cortical dysplasia type II. Neurology. 2017; 88(8): 734-42. doi.org/10.1212/WNL.0000000000003617
12.    Tassi L. Garbelli R. Colombo N. Bramerio M. Lo Russo G. Deleo F. et al. Type I focal cortical dysplasia: surgical outcome is related to histopathology. Epileptic Disorders. 2010; 12(3): 181-91. doi.org/10.1684/epd.2010.0332
13.    Bast T. Ramantani G. Seitz A. Rating D. Focal cortical dysplasia: prevalence, clinical presentation and epilepsy in children and adults. Acta Neurologica Scandinavica. 2006; 113(2): 72-81. doi.org/10.1111/j.1600-0404.2005.00545.x
14.    Hildebrandt M. Pieper T. Winkler P. Kolodziejczyk D. Holthausen H. Blümcke I. Neuropathological spectrum of cortical dysplasia in children with severe focal epilepsies. Acta Neuropathologica. 2005; 110(1): 1-10. doi.org/10.1007/s00401-005-1005-z
15.    Wong-Kisiel LC. Blauwblomme T. Ho ML. Boddaert N. Parisi J. Wirrell E. et al. Challenges in managing epilepsy associated with focal cortical dysplasia in children. Epilepsy Research. 2018;145: 1-7.  
16.    Kiefer F. Arnold K. Künzli M. Bordoli L. Schwede T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Research. 2009;37(suppl_1):D387-92. doi.org/10.1093/nar/gkn750
17.    Singh S. Yadav R. Homology modeling and docking study of Shewanella-like protein phosphatase involved in the development of ookinetes in Plasmodium. Journal of Pharmacy & Bioallied Sciences. 2019;11(3):223. doi.org/10.4103/jpbs.JPBS_24_19
18.    Yadav R. Srivastava P. Establishment of resveratrol and its derivatives as neuroprotectant against monocrotophos-induced alteration in NIPBL and POU4F1 protein through molecular docking studies. Environmental Science and Pollution Research. 2020;27(1):291-304. doi.org/10.1007/s11356-019-06669-1
19.    Otuokere IE. Amaku FJ. Alisa CO. In Silico Geometry Optimization, Excited–State Properties of (2E)-N-Hydroxy-3-[3-(Phenylsulfamoyl) Phenyl] prop-2-Enamide (Belinostat) and its Molecular Docking Studies with Ebola Virus Glycoprotein. Asian Journal of Pharmaceutical Research. 2015; 5(3): 131-7. doi.org/10.5958/2231-5691.2015.00023.5

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available