Author(s): Madan A.K., Madan Kumud

Email(s): kumud.madan@sharda.ac.in , ak_madan@rediffmail.com

DOI: 10.52711/0974-360X.2025.00422   

Address: Madan A.K.1, Madan Kumud2*
1Professor of Pharmaceutical Sciences, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana 124001
2Associate Professor, SOP, Sharda University, Greater Noida.
*Corresponding Author

Published In:   Volume - 18,      Issue - 7,     Year - 2025


ABSTRACT:
The purpose of this study was to explore refined liquisolid system as a significant method for dissolution enhancement of poorly water-soluble drugs. Refined liquid system was prepared using Piroxicam as a model drug by simply dissolving drug in a non-volatile liquid like DMSO and subsequently adsorbing the resulting drug solution onto the colloidal silica with large surface area and high liquid retention potential. The resulting product exhibited significant improvement in dissolution profile without compromising with the content uniformity. DSC of the formulation revealed existence of the drug in an amorphous state. A significant enhancement of dissolution profile was observed in case of adsorbate resulting from modified technique. Dissolution profile was much superior when compared to pure drug or conventional liquisolid system This improvement in dissolution profile can be attributed to the state of drug in solution form and that too in DMSO; water miscible solvent. Solution of Piroxicam in DMSO is adsorbed over enormous surface area of colloidal silica and hence is easily available for immediate release due to rapid miscibility of DMSO with gastrointestinal fluids. The resulting product also exhibited excellent content uniformity, steep improvement in dissolution profile, excellent content uniformity amalgamated with simplicity offers proposed technique a vast potential for commercial use.


Cite this article:
Madan A.K., Madan Kumud. Refined Liquisolid System for Enhancement of Dissolution rate Using Piroxicam. Research Journal of Pharmacy and Technology. 2025;18(7): 2948-6. doi: 10.52711/0974-360X.2025.00422

Cite(Electronic):
Madan A.K., Madan Kumud. Refined Liquisolid System for Enhancement of Dissolution rate Using Piroxicam. Research Journal of Pharmacy and Technology. 2025;18(7): 2948-6. doi: 10.52711/0974-360X.2025.00422   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-7-2


REFERENCES:
1.    E.E. RD Connors. Using a portfolio of particle growth technologies to enable delivery of drugs with poor water solubility. Drug Deliv. Technol. 2004; 4;  78–83.
2.    T. Watanabe, N. Wakiyama, F. Usui, M. Ikeda. Stability of amorphous indomethacin compounded with silica. Int. J. Pharm. 2001; 226:  81–91.
3.    N. Rasenack, B.W. Müller. Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs. Pharm Res. 19 (2002) 1894–1900. doi:10.1023/a.
4.    S. Shin, I. Oh, Y. Lee, H. Choi, J. Choi. Enhanced dissolution of furosemide by coprecipitating or cogrinding with crospovidone. Int. J. Pharm. 1998; 175: 17–24.
5.    G. Sertsou, J. Butler, J. Hempenstall, T. Rades, Solvent change co-precipitation with hydroxypropyl methylcellulose phthalate to improve dissolution characteristics of a poorly water-soluble drug. J. Pharm. Pharmacol. 2002; 54: 1041–1047.
6.    James Swarbrick. Solubilization techniques Liquid Oral Preparations. Encycl. Pharm. Technol. 2007: 2219.
7.    H. El-zein, L. Riad, A.A. El-bary. Enhancement of carbamazepine dissolution: in vitro and in vivo evaluation. Int. J. Pharm. 1998; 168: 209–220.
8.    D.E.S. S B Ruddy, B K Matuszewska, Y A Grim, D Ostovic. Design and characterization of a surfactant-enriched tablet formulation for oral delivery of a poorly water- soluble immunosuppressive agent. Int J Pharm. 1999; 182: 173–186. doi:10.1016/s0378-5173(99)00056-3.
9.    R. Challa, A. Ahuja, J. Ali, R.K. Khar. Cyclodextrins in Drug Delivery : An Updated Review. AAPS PharmSciTech. 2005; 6: 329–357.
10.    W.I.N.L. Chiou, S. Riegelman. Pharmaceutical Applications of Solid Dispersion Systems. J. Pharm. Sci. 1971; 60: 1281–1302.
11.    N. Rasenack, H. Hartenhauer, B.W. Müller. Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int. J. Pharm. 2003; 254: 137–145. doi:10.1016/S0378-5173(03)00005-X.
12.    C. Leuner, J. Dressman. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000; 50: 47–60.
13.    A.T.M. Serajuddin. Solid Dispersion of Poorly Water-Soluble Drugs : Early Promises, Subsequent Problems, and Recent Breakthroughs. J. Pharm. Sci. 1999; 88: 1058–1066.
14.    D.Q.M. Craig. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int. J. Pharm. 2002; 231: 131–144.
15.    S. Charumanee, S. Okonoki, J. Sirithunyalug. Improvement of the Dissolution Rate of Piroxicam by Surface Solid Dispersion. CMU.Journal. 2004; 3: 77–84.
16.    P.R. Lockman, R.J. Mumper, M.A. Khan, D.D. Allen. Nanoparticle Technology for Drug Delivery Across the Blood-Brain Barrier. Drug Dev. Ind. Pharm. 2002; 28: 1–13.
17.    B.E. Rabinow. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov. 2004; 3: 785–796.
18.    S. Thakral, A.K. Madan. Adduction of Amiloride Hydrochloride in Urea Through a Modified Technique for the Dissolution Enhancement. J. Pharm. Sci. 2008; 97: 1191–1201. doi:10.1002/jps.
19.    S. Thakral, A.K. Madan. Urea co-inclusion compounds of 13 cis -retinoic acid for simultaneous improvement of dissolution profile, photostability and safe handling characteristics. J. Pharm. Pharmacol. 2008; 60: 823–832. doi:10.1211/jpp.60.7.0003.
20.    Manish Dhall and A.K. Madan. Studies on urea co-inclusion complexes of ebastine for steep improvement in dissolution profile. Indian Drugs. 2017; 54: 35–45.
21.    S. Thakral, A.K. Madan. Urea inclusion compounds of enalapril maleate for the improvement of pharmaceutical characteristics. J. Pharm. Pharmacol. 2007; 59: 1501–1507. doi:10.1211/jpp.59.11.0006.
22.    M. Dhall, A. Kumar. Steep improvement in dissolution profile of ezetimibe through co-inclusion in urea. J. Pharm. Investig. 2016; 45: 433–451. doi:10.1007/s40005-016-0236-1.
23.    A. K. Madan and S. Thakral. Urea co-inclusion compounds of glipizide for the improvement of dissolution profile. J Incl Phenom Macrocycl Chem. 2008; 60: 203–209. doi:10.1007/s10847-007-9368-2.
24.    A.K. Madan and K. Madan. Simultaneous improvement in dissolution profile and content uniformity of lafutidine through co-inclusion in urea. J Incl Phenom Macrocycl Chem. 2015; 82: 335–350. doi:10.1007/s10847-015-0493-z.
25.    A. K. Madan, Madan K. Studies on urea co-inclusion complexes of simvastatin for improvement of pharmaceutical characteristics. J Incl Phenom Macrocycl Chem. 2015; 81: 105–120. doi:10.1007/s10847-014-0439-x.
26.    M. Dhall, A.K. Madan. Comparison of cyclodextrins and urea as hosts for inclusion of drugs. J. Incl. Phenom. Macrocycl. Chem. 2017; 89: 207–227.
27.    V.B. Patravale, A.A. Date, R.M. Kulkarni. Nanosuspensions : a promising drug delivery strategy. J. Pharm. Pharmacol. 2004; 56: 827–840. doi:10.1211/0022357023691.
28.    I. Abd El-Moneim Darwish and A. Hassan El-Kamel. Dissolution enchancement of glibenclamide using liquisolid tablet technology. Acta Pharm. 2001; 51: 173–181.
29.    C.-C.L. and C.I. Jarowski. Dissolution Rates of Corticoid Solutions Dispersed on Silicas. J. Pharm. Sci. 1984; 73: 401–403.
30.    B.D.R. S S Spireas, C I Jarowski. Powdered solution technology : principles and mechanism. Pharm Res. 1992; 9: 1351–1358. doi:10.1023/a.
31.    T. Patel, L.D. Patel, B.N. Suhagia, T. Soni, T. Patel. Formulation of Fenofibrate Liquisolid Tablets Using Central Composite Design. Curr. Drug Deliv. 2014; 11: 11–23.
32.    M. Saeedi, J. Akbari, K. Morteza-semnani. Enhancement of Dissolution Rate of Indomethacin Using Liquisolid Compacts. Iran. J. Pharm. Res. 2011; 10:  25–34.
33.    C.M. Hentzschel, M. Alnaief, I. Smirnova, A. Sakmann, C.S. Leopold. Enhancement of griseofulvin release from liquisolid compacts. Eur J Pharm Biopharm. 2012; 80: 130–135. doi:10.1016/j.ejpb.2011.08.001.
34.    A.N. Yousef Javadzadeh, Baharak Jafari-Navimipour. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug ( carbamazepine ). Int. J. Pharm. 2007; 341: 26–34.
35.    A.S. Kulkarni, J.B. Gaja. Formulation and Evaluation of Liquisolid Compacts of Diclofenac Sodium, PDA. J. Pharm. Sci. Technl. 2010; 64: 222–232.
36.    N. Jaipakdee, E. Limpongsa, B. Sripanidkulchai, P. Piyachaturawat. Preparation of Curcuma comosa tablets using liquisolid techniques : In vitro and in vivo evaluation. Int J Pharm. 2018; 553: 157–168. doi:10.1016/j.ijpharm.2018.10.031.
37.    B.K. Pathak, M. Raghav, A.R. Thakkar, B.A. Vyas, P.J. Shah. Enhanced oral bioavailability of Etodolac by liquisolid compact technique : optimisation, in-vitro and in-vivo evaluation. Curr Drug Deliv. 2020; 17. doi:10.2174/1567201817666201026111559.
38.    G.V. Vittal, R. Deveswaran, S. Bharath, B. V Basavaraj, V. Madhavan. Formulation and characterization of ketoprofen liquisolid compacts by Box-Behnken design. Int J Pharm Investig. 2012; 2: 150–156. doi:10.4103/2230-973X.104398.
39.    S.K. Singh, K.K. Srinivasan, K. Gowthamarajan, D. Prakash, N.B. Gaikwad. Influence of formulation parameters on dissolution rate enhancement of glyburide using liquisolid technique. Drug Dev Ind Pharm. 2012; 38: 961–970. doi:10.3109/03639045.2011.634810.
40.    Y.J. Mir-Ali Molaei, Karim Osouli-Bostanabad, Khosro Adibkia, Javad Shokri, Solmaz Asnaashari. Enhancement of ketoconazole dissolution rate by the liquisolid technique. Acta Pharm. 2018; 68: 325–336.
41.    K. Venkateswarlu, J.K. Preethi, K.B. Chandrasekhar. Enhancement of Loperamide Dissolution Rate by Liquisolid Compact Technique. Adv. Pharm. Bull. 2016; 6: 385–390. doi:10.15171/apb.2016.050.
42.    D.S. Patel, R.M. Pipaliya, N. Surti. Liquisolid Tablets for Dissolution Enhancement of a Hypolipidemic Drug. Indian J Pharm Sci. 2015; 77: 290–298.
43.    N.P. Kala, D.H. Shastri, P.K. Shelat. Design and Characterization of Buccoadhesive Liquisolid System of an Antihypertensive Drug. J. Drug Deliv. 2015: 1–9.
44.    M. Lu, H. Xing, J. Jiang, X. Chen, T. Yang, D. Wang, P. Ding. Liquisolid technique and its applications in pharmaceutics. Asian J. Pharm. Sci. 2017; 12: 115–123. doi:10.1016/j.ajps.2016.09.007.
45.    K.D. Tripathi. Nonsteroidal Antiinflammatory Drugs and Antipyretic-Analgesics, in: Essentials Med. Pharmacol. p. 201.
46.    Y. Javadzadeh, M.R. Siahi-shadbad, M. Barzegar-Jalali, A. Nokhodchi. Enhancement of dissolution rate of piroxicam using liquisolid compacts. Farm. 2005; 60: 361–365. doi:10.1016/j.farmac.2004.09.005.
47.    G. Gold, R.N. Duvall, B.T. Palermo. Powder Flow Studies I : Instrumentation and Applications. J. Pharm. Sci. 1966; 55: 1133–1136.
48.    R.C. Rowe, P.J. Sheskey, S.C. Owen. Cellulose Microcrystalline and Colloidal silica, in: Handb. Pharm. Excipients. 2006: pp. 132–191.
49.    T.W. and S Spireas, R. Grover. Effect of powder substrate on the dissolution properties of methyclothiazide liquisolid compacts. Drug Dev Ind Pharm. 1999; 25: 163–168. doi:10.1081/ddc-100102156.
50.    A. Sheth, C.I. Jarowski. Use of Powdered Solutions to Improve The Dissolution Rate of Polythiazide Tablets. Drug Dev. Ind. Pharm. 1990; 16: 1–4.
51.    S. Spireas, United States Patent US 6,423,339 B1, 2002.
52.    K. Florey, Pirocicam, in: Anal. Profiles Drug Subst., 1986: p. 509.
53.    The Indian Pharmacopeia, Ministry of Health and Family Welfare, 2007.
54.    K. Florey, Piroxicam, in: Anal. Profiles Drug Subst. Vol. 13, 1984.
55.    <1174>Powder Flow, United States Pharmacop. 28. 30 (2016) 1–7.
56.    L.V.A.J.H. C.Ansel, Dosage Form Design: Pharmaceutical and Formulation Consideration, in: Ansel’s Pharm. Dos. Forms Drug Deliv. Syst., 2014: pp. 102–165.
57.    S.J. Carter, Surface and Interfacial Phenomena, in: Cooper Gunn’s Tutor. Pharm., 2000: pp. 33–53.
58.    P. J.Sinko, Micromeritics, in: MARTIN ’ S Phys. Pharm. Pharm. Sci., 2011: pp. 800–848.
59.    A. Nokhodchi, Y. Javadzadeh, M.R. Siahi-shadbad, M. Barzegar-Jalali. The effect of type and concentration of vehicles on the dissolution rate of a poorly soluble drug (indomethacin from liquisolid compacts. J Pharm Pharm Sci. 2005; 8: 18–25.
60.    Impurities: Guideline For Residual Solvents Q3C(R6), International Council For Harmonisation of Technical Requirements For Pharmaceuticals For Human Use, 2016.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available