Author(s):
Adivarekar S. S., Udugade B.V., Biraje T. M., Palamkar P. S., Udugade S. B., Gaikwad T.K., Pujari M. M., Kandele S.V.
Email(s):
mailadivarekarshonak@gmail.com
DOI:
10.52711/0974-360X.2025.00437
Address:
Adivarekar S. S.1*, Udugade B.V.1, Biraje T. M.1, Palamkar P. S.1, Udugade S. B.2, Gaikwad T.K.1, Pujari M. M.1, Kandele S.V.3
1Department of Pharmaceutical Chemistry, Ashokrao Mane College of Pharmacy, Shivaji University, Peth-Vadgaon, 416112, Maharashtra, India.
2Department of Pharmaceutics, Krishna Vishwa Vidyapeeth (Deemed to be University), Krishna Institute of Pharmacy, Karad, 415539, Maharashtra, India.
3Department of Pharmaceutical Chemistry, Shri. Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, DBATU, University, 424001, Maharashtra, India.
*Corresponding Author
Published In:
Volume - 18,
Issue - 7,
Year - 2025
ABSTRACT:
Obesity is a universal healthiness topic that necessitates the discovery of novel therapeutic agents. This research focuses on repurposing Orlistat analogs using a ligand-based screening approach with Morgan fingerprints to identify promising candidates for obesity treatment. Orlistat, a lipase inhibitor that reduces fat absorption, was selected as the primary ligand due to its established mechanism of action, clinical efficacy, and well-documented safety profile. A ligand screening process was conducted using the DrugRep platform, which evaluated several compounds based on binding scores and protein interactions. Among the screened compounds, chloramphenicol palmitate (DB14658) demonstrated the highest binding affinity (-7.5), interacting with key residues such as ASP36, TYR38, and ARG100 within the target protein’s binding pockets. The docking studies were further validated by PDB-REDO refinements, which improved the crystallographic model quality, reducing R and R-free values and enhancing the Ramachandran plot and rotamer normality. These improvements indicate better molecular geometry and protein-ligand interactions. The outcomespropose that chloramphenicol palmitate (DB14658) holds potential as a repurposed therapeutic agent for obesity due to its strong binding affinity and favourable interactions with target proteins. Additionally, the study highlights the viability of repurposing Orlistat analogs by optimizing their molecular structures for enhanced efficacy and minimized side effects. This ligand-based screening approach presents a promising strategy for developing novel anti-obesity drugs by repurposing well-characterised compounds.
Cite this article:
Adivarekar S. S., Udugade B.V., Biraje T. M., Palamkar P. S., Udugade S. B., Gaikwad T.K., Pujari M. M., Kandele S.V.. Repurposing Orlistatanaloges: A Ligand-Based Screening Approach using Morgan Fingerprints for Novel Therapeutic agents for Obesity. Research Journal of Pharmacy and Technology. 2025;18(7):3051-6. doi: 10.52711/0974-360X.2025.00437
Cite(Electronic):
Adivarekar S. S., Udugade B.V., Biraje T. M., Palamkar P. S., Udugade S. B., Gaikwad T.K., Pujari M. M., Kandele S.V.. Repurposing Orlistatanaloges: A Ligand-Based Screening Approach using Morgan Fingerprints for Novel Therapeutic agents for Obesity. Research Journal of Pharmacy and Technology. 2025;18(7):3051-6. doi: 10.52711/0974-360X.2025.00437 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-7-17
5. REFERENCES:
1. Kumar A, Chauhan S. Pancreatic lipase inhibitors: The road voyaged and successes. Life Sciences. 2021; Apr 15; 271:119115.https://doi.org/10.1016/j.lfs.2021.119115
2. Hao X, Zhu X, Tian H, Lai G, Zhang W, Zhou H, Liu S. Pharmacological effect and mechanism of orlistat in anti-tumor therapy: A review. Medicine. 2023 Sep 8;102(36):e34671. https://doi.org/10.1097/MD.0000000000034671
3. Bruno J, Carruthers D, Alemán JO. Prevention and Treatment of Obesity for Cardiovascular Risk Mitigation: Dietary and Pharmacologic Approaches. Prevention and Treatment of Cardiovascular Disease: Nutritional and Dietary Approaches. 2021: 129-41. https://doi.org/10.1007/978-3-030-78177-4_8
4. Feng X, Lin Y, Zhuo S, Dong Z, Shao C, Ye J, Zhong B. Treatment of obesity and metabolic-associated fatty liver disease with a diet or orlistat: a randomized controlled trial. The American Journal of Clinical Nutrition. 2023; Apr 1; 117(4): 691-700. https://doi.org/10.1016/j.ajcnut.2023.02.008
5. Rajan L, Radhakrishnan A, Selleppan G, Mohankumar SK. Susceptible genetic polymorphisms and their association with adverse effects of orlistat therapy. Obesity Medicine. 2021; Aug 1; 25: 100360. https://doi.org/10.1016/j.obmed.2021.100360
6. Abdalla Ahmed MA, Ssemmondo E, Mark-Wagstaff C, Sathyapalan T. Advancements in the management of obesity: a review of current evidence and emerging therapies. Expert Review of Endocrinology and Metabolism. 2024; May 3; 19(3): 257-68. https://doi.org/10.1080/17446651.2024.2347258
7. Pandey AK, Verma S. Computational Approaches for Structure-Assisted Drug Discovery and Repurposing. InUnraveling New Frontiers and Advances in Bioinformatics 2024; Sep 22 (pp. 163-192). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-7123-3_9
8. Moetlediwa MT, Jack BU, Mazibuko-Mbeje SE, Pheiffer C, Titinchi SJ, Salifu EY, Ramharack P. Evaluating the Therapeutic Potential of Curcumin and Synthetic Derivatives: A Computational Approach to Anti-Obesity Treatments. International Journal of Molecular Sciences. 2024; Feb 23; 25(5): 2603. https://doi.org/10.3390/ijms25052603
9. Zhan P, Yu B, Ouyang L. Drug repurposing: An effective strategy to accelerate contemporary drug discovery. Drug discovery today. 2022 Jul;27(7):1785. https://doi.org/10.1016/j.drudis.2022.05.026
10. Shiammala PN, Duraimutharasan NK, Vaseeharan B, Alothaim AS, Al-Malki ES, Snekaa B, Safi SZ, Singh SK, Velmurugan D, Selvaraj C. Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors. Methods. 2023 Sep 29. https://doi.org/10.1016/j.ymeth.2023.09.010
11. Begley CG, Ashton M, Baell J, Bettess M, Brown MP, Carter B, Charman WN, Davis C, Fisher S, Frazer I, Gautam A. Drug repurposing: Misconceptions, challenges, and opportunities for academic researchers. Science Translational Medicine. 2021 Sep 22; 13(612): eabd5524. https://doi.org/10.1126/scitranslmed.abd5524
12. Krishnamurthy N, Grimshaw AA, Axson SA, Choe SH, Miller JE. Drug repurposing: a systematic review on root causes, barriers and facilitators. BMC health services research. 2022; Jul 29; 22(1): 970. https://doi.org/10.1186/s12913-022-08272-z
13. Tanoli Z, Seemab U, Scherer A, Wennerberg K, Tang J, Vähä-Koskela M. Exploration of databases and methods supporting drug repurposing: a comprehensive survey. Briefings in bioinformatics. 2021; Mar; 22(2): 1656-78. https://doi.org/10.1093/bib/bbaa003
14. Szilágyi K, Flachner B, Hajdú I, Szaszkó M, Dobi K, Lőrincz Z, Cseh S, Dormán G. Rapid identification of potential drug candidates from multi-million compounds’ repositories. combination of 2D similarity search with 3D ligand/structure based methods and in vitro screening. Molecules. 2021; Sep 15; 26(18): 5593. https://doi.org/10.3390/molecules26185593
15. Ali S, Chourasia P, Patterson M. Expanding Chemical Representation with k-mers and Fragment-Based Fingerprints for Molecular Fingerprinting. InAnnual International Conference on Information Management and Big Data 2023 Dec 13 (pp. 17-29). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63616-5_2
16. Bon M, Bilsland A, Bower J, McAulay K. Fragment‐based drug discovery—the importance of high‐quality molecule libraries. Molecular Oncology. 2022; Nov; 16(21): 3761-77. https://doi.org/10.1002/1878-0261.13277
17. Pinzi L, Bisi N, Rastelli G. How drug repurposing can advance drug discovery: challenges and opportunities. Frontiers in Drug Discovery. 2024; Aug 20; 4: 1460100. https://doi.org/10.3389/fddsv.2024.1460100
18. Cignarella A, Busetto L, Vettor R. Pharmacotherapy of obesity: An update. Pharmacological research. 2021; Jul 1; 169: 105649. https://doi.org/10.1016/j.phrs.2021.105649
19. Bhaskar V, Namboori K, Pappachen LK. In silico discovery of novel ligands for anti-tubercular targets using computer aided drug design. Research Journal of Pharmacy and Technology. 2019; 12(11): 5646-50. https://doi.org/10.5958/0974-360X.2019.00977.6
20. Vishvakarma R, Majumdar A, Malviya N, Dhere M. Formulation and evaluation of orlistat loaded microsponges for the treatment of obesity. Research Journal of Pharmacy and Technology. 2022; 15(7): 3221-5. https://doi.org/10.52711/0974-360X.2022.00540
21. Kumar A, Chauhan S. Pancreatic lipase inhibitors: The road voyaged and successes. Life Sciences. 2021; Apr 15; 271: 119115. https://doi.org/10.1016/j.lfs.2021.119115
22. Irham LM, Nuryana Z, Perwitasari DA, Nuari YR, Sarasmita MA, Adikusuma W, Dania H, Maliza R, Cheung R. Worldwide publication trends of drug repurposing and drug repositioning in the science of medicine (2003-2022). Research Journal of Pharmacy and Technology. 2023; 16(3): 1333-41. https://doi.org/10.52711/0974-360X.2023.00219
23. Gan, Jh., Liu, Jx., Liu, Y. et al. DrugRep: an automatic virtual screening server for drug repurposing. ActaPharmacol Sin (2022). https://doi.org/10.1038/s41401-022-00996-2.
24. Ghorbanali Z, Zare-Mirakabad F, Salehi N, Akbari M, Masoudi-Nejad A. DrugRep-HeSiaGraph: when heterogenoussiamese neural network meets knowledge graphs for drug repurposing. BMC bioinformatics. 2023; Oct 3; 24(1): 374. https://doi.org/10.1186/s12859-023-05479-7
25. Zhong S, Guan X. Count-based morgan fingerprint: a more efficient and interpretable molecular representation in developing machine learning-based predictive regression models for water contaminants’ activities and properties. Environmental Science & Technology. 2023; Jul 5; 57(46): 18193-202. https://doi.org/10.1021/acs.est.3c02198.
26. Ehiro T. Descriptor generation from Morgan fingerprint using persistent homology. SAR and QSAR in Environmental Research. 2024; Jan 2; 35(1): 31-51. https://doi.org/10.1080/1062936X.2023.2301327
27. Ying, C.Z., Leong, C.H., Alvin, L.W.X., Yang, C.J. (2021). Improving the Workflow of Chemical Structure Elucidation with Morgan Fingerprints and the Tanimoto Coefficient. In: Guo, H., Ren, H., Kim, N. (eds) IRC-SET 2020. Springer, Singapore. https://doi.org/10.1007/978-981-15-9472-4_2
28. Parameswari P, Devika R. In silico molecular docking studies of quercetin compound against anti-inflammatory and anticancer proteins. Research Journal of Pharmacy and Technology. 2019; 12(11): 5305-9. https://doi.org/10.5958/0974-360X.2019.00919.3
29. Suganya J, Viswanathan T, Radha M, Marimuthu N. In silico Molecular Docking studies to investigate interactions of natural Camptothecin molecule with diabetic enzymes. Research Journal of Pharmacy and Technology. 2017; 10(9): 2917-22. https://doi.org/10.5958/0974-360X.2017.00515.7
30. Brito Raj S, Lakshmi K, Meenakshi R, Bhaskar Reddy K, Karthikeyan R, Vijayakumar B. Comparing the binding energies and inhibition constant of Sunitinib malate-metal complex on Tyrosine kinase receptor by Computational Molecular Docking. Research Journal of Pharmacy and Technology. 2024; 17(9): 4501-6. https://doi.org/10.52711/0974-360X.2024.00696
31. Sakshi Bhardwaj, Sonal Dubey. Qsar and Docking Studies of Some Novel Piperine Analogues as Monoamine Oxidase Inhibitors. Asian Journal of Research in Pharmaceutical Sciences. 2022; 12(2): 115-2. https://doi.org/10.52711/2231-5659.2022.00019
32. Radhika Chelamalla, AjithaMakula. Molecular docking studies and ADMET Predictions of Pyrimidine Coumarin Scaffolds as Potential IDO Inhibitors. Asian J. Research Chem. 2017; 10(3): 331-340. https://doi.org/0.5958/0974-4150.2017.00056.6
33. Liu, Y., Cao, Y. (2024). Protein–Ligand Blind Docking Using CB-Dock2. In: Gore, M., Jagtap, U.B. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 2714. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3441-7_6
34. Aviz-Amador A, Contreras-Puentes N, Mercado-Camargo J. Virtual screening using docking and molecular dynamics of cannabinoid analogs against CB1 and CB2 receptors. Computational Biology and Chemistry. 2021; Dec 1; 95: 107590. https://doi.org/10.1016/j.compbiolchem.2021.107590
35. Payal R. Nagrale, Payal S. Gadiwan, Nitin Y. Gorad, Omkar D. Lahamge, Omkar P. Kanse, Omkar M. Veer, Rinaj Attar. Overview of Tools used in Molecular Docking. Asian Journal of Pharmaceutical Research. 2024; 14(3): 326-0. https://doi.org/10.52711/2231-5691.2024.00051
36. Nandhini S, Radha R , Vadivu R. Docking of Hematoporphyrin on Various Anticancer Drugs Targeting Enzymes. Asian J. Pharm. Res. 2016; 6(3): 123-130. https://doi.org/10.5958/2231-5691.2016.00019.8
37. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The Protein Data Bank (2000) Nucleic Acids Research 28: 235-242 https://doi.org/10.1093/nar/28.1.235.
38. Velankar, S., Burley, S.K., Kurisu, G., Hoch, J.C., Markley, J.L. (2021). The Protein Data Bank Archive. In: Owens, R.J. (eds) Structural Proteomics. Methods in Molecular Biology, vol 2305. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1406-8_1
39. de Vries I, Perrakis A, Joosten RP. PDB‐REDO in Computational‐Aided Drug Design (CADD). Open Access Databases and Datasets for Drug Discovery. 2024; Feb 5:201-29. https://doi.org/10.1002/9783527830497.ch7
40. Armstrong D, Berrisford J, Choudhary P, Pravda L, Tolchard J, Varadi M, Velankar S. The Protein Data Bank (PDB) and Macromolecular Structure Data Supporting Computer‐Aided Drug Design. Open Access Databases and Datasets for Drug Discovery. 2024; Feb 5: 139-73. https://doi.org/10.1002/9783527830497.ch5