Author(s): Nuri Ari Efiana, Khusnul Khotimah R, Ananda CPDP Irawan, Ernidawati, Dzakira Tsabita Atmaji, Farahidah Muhamed, Fatema Tuz Zohera, Adi Permadi, Iis Wahyuningsih

Email(s): iis.wahyuningsih@pharm.uad.ac.id

DOI: 10.52711/0974-360X.2025.00421   

Address: Nuri Ari Efiana1, Khusnul Khotimah R1, Ananda CPDP Irawan1, Ernidawati1, Dzakira Tsabita Atmaji1, Farahidah Muhamed3, Fatema Tuz Zohera3, Adi Permadi2, Iis Wahyuningsih1*
1Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Ahmad Dahlan, Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta 55164, Indonesia.
2Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Ahmad Dahlan, Jl. Ring Road Selatan, Tamanan, Banguntapan, Bantul Yogyakarta 55166, Indonesia.
3Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University, Malaysia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 7,     Year - 2025


ABSTRACT:
Capsanthin exhibits potential therapeutic effects for various diseases such as cancer, diabetes, and heart disease. However, capsanthin has several limitations including its lipophilic nature and instability against oxygen, light, and high temperatures. To overcome this problem, a drug delivery system for capsanthin is needed. Therefore, this research aimed to develop a nanostructured lipid carrier (NLC) as a carrier for capsanthin. The confirmation of capsanthin in capsanthin extract was carried out using FTIR and TLC analysis. The method used for the NLC preparation was a modified solvent injection method. The optimization of NLC formulations was performed using various liquid lipids followed by measuring the properties of NLC including particle size and zeta potential. The selected formulation was characterized regarding the loading capacity, transmission electron microscopy (TEM) as well as release study. The results of FTIR and TLC confirmed the presence of capsanthin in the extract. The formulation optimization showed that the capsanthin-loaded NLC using wheat germ oil (F1) as a liquid lipid provided various properties including the particle size, zeta potential, and loading capacity of 266,5±65, 3nm; -15,0±0,4mV and 22±4%, respectively. Furthermore, a release study exhibited that capsanthin could be incorporated into NLC characterized by significantly slower capsanthin release compared to unloaded capsanthin. In conclusion, NLC can be used as a promising capsanthin carrier and applied in drug delivery systems.


Cite this article:
Nuri Ari Efiana, Khusnul Khotimah R, Ananda CPDP Irawan, Ernidawati, Dzakira Tsabita Atmaji, Farahidah Muhamed, Fatema Tuz Zohera, Adi Permadi, Iis Wahyuningsih. Development of Nanostructured Lipid Carrier (NLC) as a Promising Carrier for Capsanthin. Research Journal of Pharmacy and Technology. 2025;18(7): 2941-7. doi: 10.52711/0974-360X.2025.00421

Cite(Electronic):
Nuri Ari Efiana, Khusnul Khotimah R, Ananda CPDP Irawan, Ernidawati, Dzakira Tsabita Atmaji, Farahidah Muhamed, Fatema Tuz Zohera, Adi Permadi, Iis Wahyuningsih. Development of Nanostructured Lipid Carrier (NLC) as a Promising Carrier for Capsanthin. Research Journal of Pharmacy and Technology. 2025;18(7): 2941-7. doi: 10.52711/0974-360X.2025.00421   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-7-1


REFERENCES:
1.    De Oliveira GLR, Medeiros I, Nascimento SS da C, et al. Antioxidant stability enhancement of carotenoid rich-extract from Cantaloupe melon (Cucumis melo L.) nanoencapsulated in gelatin under different storage conditions. Food Chem. 2021; 348: 129055. doi: 10.1016/j.foodchem.2021.129055.
2.    Mohd Hassan N, Yusof NA, Yahaya AF, et al. Carotenoids of Capsicum Fruits: Pigment Profile and Health-Promoting Functional Attributes. Antioxidants. 2019; 8(10): 469; doi: 10.3390/antiox8100469.
3.    Erden Y. Capsanthin Stimulates the Mitochondrial Apoptosis-Mediated Cell Death, following DNA Damage in MCF-7 Cells. Nutr Cancer. 2021; 73(4): 662–670; doi: 10.1080/01635581.2020.1819347.
4.    Wu J-Y, Chien Y-C, Tsai I-C, et al. Capsanthin induces G1/S phase arrest, erlotinib-sensitivity and inhibits tumor progression by suppressing EZH2-mediated epigenetically silencing of p21 in triple-negative breast cancer cells. Aging. 2021; 13(9): 12514–12525; doi: 10.18632/aging.202925.
5.    Kim S, Lee Y-R, Lee E-O, et al. Capsanthin Inhibits Atherosclerotic Plaque Formation and Vascular Inflammation in ApoE−/− Mice. Biomedicines. 2022; 10(8): 1780; doi: 10.3390/biomedicines10081780.
6.    Jo SJ, Kim JW, Choi HO, et al. Capsanthin Inhibits both Adipogenesis in 3T3-L1 Preadipocytes and Weight Gain in High-Fat Diet-Induced Obese Mice. Biomol Ther. 2017; 25(3): 329–336. doi: 10.4062/biomolther.2017.048.
7.    Kim J-S, Ha T-Y, Kim S, et al. Red paprika (Capsicum annuum L.) and its main carotenoid capsanthin ameliorate impaired lipid metabolism in the liver and adipose tissue of high-fat diet-induced obese mice. J Funct Foods 2017; 31: 131–140; doi: 10.1016/j.jff.2017.01.044.
8.    Shanmugham V, Subban R. Comparison of the Anti-Obesity Effect of Enriched Capsanthin and Capsaicin from Capsicum annuum L. Fruit in Obesity-Induced C57BL/6J Mouse Model. Food Technol Biotechnol. 2022; 60(2): 202–212; doi: 10.17113/ftb.60.02.22.7376.
9.    Lv J, Qi L, Yu C, et al. Consumption of spicy foods and total and cause specific mortality: population based cohort study. BMJ 2015; 351: h3942; doi: 10.1136/bmj.h3942.
10.    Kaur M, Verma BR, Zhou L, et al. Association of pepper intake with all-cause and specific cause mortality - A systematic review and meta-analysis. Am J Prev Cardiol. 2021; 9: 100301; doi: 10.1016/j.ajpc.2021.100301.
11.    Bonaccio M, Di Castelnuovo A, Costanzo S, et al. Chili Pepper Consumption and Mortality in Italian Adults. J Am Coll Cardiol 2019; 74(25): 3139–3149. doi: 10.1016/j.jacc.2019.09.068.
12.    Shanmugham V, Subban R. Capsanthin from Capsicum annum fruits exerts anti-glaucoma, antioxidant, anti-inflammatory activity, and corneal pro-inflammatory cytokine gene expression in a benzalkonium chloride-induced rat dry eye model. J Food Biochem. 2022; 46(10): e14352; doi: 10.1111/jfbc.14352.
13.    Maoka T, Mochida K, Kozuka M, et al. Cancer chemopreventive activity of carotenoids in the fruits of red paprika Capsicum annuum L. Cancer Lett. 2001; 172(2): 103–109; doi: 10.1016/S0304-3835(01)00635-8.
14.    Kulkarni M, Goge N, Date AA. Development of Nanoemulsion Preconcentrate of Capsanthin with Improved Chemical Stability. Assay Drug Dev Technol. 2020; 18(1): 34–44; doi: 10.1089/adt.2019.916.
15.    Kennedy LE, Abraham A, Kulkarni G, et al. Capsanthin, a Plant-Derived Xanthophyll: a Review of Pharmacology and Delivery Strategies. AAPS PharmSciTech. 2021; 22(5): 203; doi: 10.1208/s12249-021-02065-z.
16.    Muhesen RA, Rajab NA. Formulation and Characterization of Olmesartan medoxomil as a Nanoparticle. Res J Pharm Technol 2023; 16(7): 3314–3320; doi: 10.52711/0974-360X.2023.00547.
17.    Raval AJ, Patel MM. Techniques to Improve Bioavailability of Poorly Water Soluble Drugs – A review. Res J Pharm Dos Forms Technol. 2011; 3(5): 182–192.
18.    Kalimuthu S, Yadav AV. Nanobased Drug Delivery System: A Review. Res J Pharm Technol. 2009; 2(1): 21–27.
19.    Pati RY, Patil SA, Chivate ND, et al. Herbal Drug Nanoparticles: Advancements in Herbal Treatment. Res J Pharm Technol. 2018; 11(1): 421–426; doi: 10.5958/0974-360X.2018.00078.1.
20.    Indalkar YR, Pimpodkar NV, Godase AS, et al. A Compressive Review on the Study of Nanotechnology for Herbal Drugs. Asian J Pharm Res. 2015; 5(4): 203–207; doi: 10.5958/2231-5691.2015.00031.3.
21.    S KS, Alli R. Preparation, Characterization and Optimization of Irbesartan Loaded Solid Lipid Nanoparticles for Oral Delivery. Asian J Pharm Technol. 2021; 11(2): 97–104. doi: 10.52711/2231-5713.2021.00016.
22.    Shaikh S, Bhagwat G. Colloidal Drug Delivery of Simvastatin for Prolonged Drug Release and Increased Bioavailability. Asian J Res Pharm Sci. 2023; 13(2): 130–138; doi: 10.52711/2231-5659.2023.00024.
23.    Jafarifar Z, Rezaie M, Sharifan P, et al. Preparation and Characterization of Nanostructured Lipid Carrier (NLC) and Nanoemulsion Containing Vitamin D3. Appl Biochem Biotechnol 2022; 194(2): 914–929. doi: 10.1007/s12010-021-03656-z.
24.    Teixeira MI, Lopes CM, Gonçalves H, et al. Formulation, Characterization, and Cytotoxicity Evaluation of Lactoferrin Functionalized Lipid Nanoparticles for Riluzole Delivery to the Brain. Pharmaceutics 2022; 14(1): 185. doi: 10.3390/pharmaceutics14010185.
25.    Yang C, Yan H, Jiang X, et al. Preparation of 9Z-β-Carotene and 9Z-β-Carotene High-Loaded Nanostructured Lipid Carriers: Characterization and Storage Stability. J Agric Food Chem 2020; 68(47): 13844–13853; doi: 10.1021/acs.jafc.0c02342.
26.    Jaiswal P, Gidwani B, Vyas A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif Cells Nanomedicine Biotechnol. 2016; 44(1): 27–40; doi: 10.3109/21691401.2014.909822.
27.    Nguyen VH, Thuy VN, Van TV, et al. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. Open Nano. 2022; 8: 100064; doi: 10.1016/j.onano.2022.100064.
28.    Duong V-A, Nguyen T-T-L, Maeng H-J. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method. Molecules. 2020; 25(20): 4781; doi: 10.3390/molecules25204781.
29.    Neupane YR, Srivastava M, Ahmad N, et al. Lipid based nanocarrier system for the potential oral delivery of decitabine: Formulation design, characterization, ex vivo, and in vivo assessment. Int J Pharm. 2014; 477(1): 601–612; doi: 10.1016/j.ijpharm.2014.11.001.
30.    Shah NV, Seth AK, Balaraman R, et al. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study. J Adv Res. 2016; 7(3): 423–434; doi: 10.1016/j.jare.2016.03.002.
31.    Zhang C, Peng F, Liu W, et al. Nanostructured lipid carriers as a novel oral delivery system for triptolide: induced changes in pharmacokinetics profile associated with reduced toxicity in male rats. Int J Nanomedicine. 2014; 9(1): 1049–1063; doi: 10.2147/IJN.S55144.
32.    Patil UK, Sahu R, Yadav SK. Formulation and Evaluation of Controlled Release Microspheres Containing Metformin Hydrochloride. Res J Pharm Technol. 2009; 2(1): 176–179.
33.    Bahadur S, Chanda R, Roy A, et al. Preparation and Evaluation of Mucoadhesive Microcapsules of Captopril for Oral Controlled Release. Res J Pharm Technol. 2008; 1(2): 100–105.
34.    Zhang C, Peng F, Liu W, et al. Nanostructured lipid carriers as a novel oral delivery system for triptolide: induced changes in pharmacokinetics profile associated with reduced toxicity in male rats. Int J Nanomedicine. 2014; 9(1): 1049–1063; doi: 10.2147/IJN.S55144.
35.    Banerjee A, Qi J, Gogoi R, et al. Role of Nanoparticle Size, Shape and Surface Chemistry in Oral Drug Delivery. J Control Release Off J Control Release Soc. 2016; 238: 176–185; doi: 10.1016/j.jconrel.2016.07.051.
36.    Sun W, Gao J, Fan R, et al. The Effect of Particle Size on the Absorption of Cyclosporin A Nanosuspensions. Int J Nanomedicine. 2022; 17: 1741–1755; doi: 10.2147/IJN.S357541.
37.    Anagha B, Shivanand H, Manoj A, et al. Effect of Lipids and Surfactants on Solid Lipid Nanoparticle Engineering. Res J Pharm Technol. 2011; 4(4): 521–526.
38.    Kengar MD, Jadhav AA, Kumbhar SB, et al. A Review on Nanoparticles and its Application. Asian J Pharm Technol. 2019; 9(2): 115–124; doi: 10.5958/2231-5713.2019.00020.5.
39.    S SO, C PA, A PS. Nanoparticles: As a Nano based Drug Delivery System. Asian J Res Pharm Sci. 2022; 12(1): 11–16; doi: 10.52711/2231-5659.2022.00003.
40.    Griffin BT, Guo J, Presas E, et al. Pharmacokinetic, pharmacodynamic and biodistribution following oral administration of nanocarriers containing peptide and protein drugs. Adv Drug Deliv Rev. 2016; 106: 367–380; doi: 10.1016/j.addr.2016.06.006.
41.    Lin S, Wu F, Cao Z, et al. Advances in Nanomedicines for Interaction with the Intestinal Barrier. Adv NanoBiomed Res 2022; 2(6): 2100147; doi: 10.1002/anbr.202100147.
42.    Petrou G, Crouzier T. Mucins as multifunctional building blocks of biomaterials. Biomater Sci. 2018; 6(9): 2282–2297. doi: 10.1039/C8BM00471D.
43.    Liu Y, Yang G, Jin S, et al. Development of High-Drug-Loading Nanoparticles. ChemPlusChem. 2020; 85(9): 2143–2157. doi: 10.1002/cplu.202000496.
44.    Shinde AJ, More HN. Nanoparticles: As Carriers for Drug Delivery System. Res J Pharm Dos Forms Technol. 2009; 1(3): 80–86.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available