Author(s):
Kajeiou Hamza, Malki Nadia, Marjaa Hanae, Azougay Abdallah, SBAA Mohammed
Email(s):
kajeiou_hamza1718@ump.ac.ma
DOI:
10.52711/0974-360X.2025.00355
Address:
Kajeiou Hamza1*, Malki Nadia1, Marjaa Hanae2, Azougay Abdallah3, SBAA Mohammed1
1Laboratory for Amelioration of Agricultural Production, Biotechnology and Environment (LAPABE), Faculty of Science, Mohammed Premier University, PB 717, 60000, BV M6, Oujda, Morocco.
2Laboratory of Natural Resources and Sustainable Development (LRDD), Kenitra Faculty of Science, Ibn Tofail University, Kenitra 14000, Morocco.
3Laboratory of Applied Geosciences (LGA) Faculty of Science, Mohammed Premier University, PB 717, 60000, BV M6, Oujda, Morocco.
*Corresponding Author
Published In:
Volume - 18,
Issue - 6,
Year - 2025
ABSTRACT:
Wastewater mainly contains chemical (pesticides, pharmaceuticals, heavy metals, ...) and biological (bacteria, helminths, viruses, ...) risks, and their effects on human health and the environment are very harmful when reused. The bioaccumulation of heavy metals or organic matter in soils irrigated by these waters can affect their quality. On the other hand, the transmission of infections by pathogenic organisms is the main worry, and simple contact with contaminated water can lead to hydric diseases such as typhoid, cholera, etc. With serious and sometimes fatal symptoms such as diarrhea. The reuse of treated wastewater from the Oujda WWTP (around 900 m3/d: i.e., 2.63% of treated water flow) for localized irrigation of the Oujda Ecological Park is a first pilot experiment in the Oriental region. Our study focused on a four-year follow-up (from 2018 to 2021) of the physicochemical and bacteriological quality of the treated wastewater from the WWTP, the drippers in the ecological park's drip irrigation system and the irrigated soil at different plant occupancy levels (under dripper, under tree and between tree rows). The results of treated wastewater analyses showed average concentrations of BOD5, COD and TSS acceptable in relation to Moroccan reuse standards, at 69.0 mg O2/l, 170.8 mg O2/l and 87.4 mg/l respectively. Paradoxically, bacteriological analyses did not comply with Moroccan reuse standards, with an average concentration of 4.103 CFU/100ml. Analyses of the irrigated soil in the ecological park revealed a spatiotemporal increase in the concentration of fecal coliforms, organic matter and electrical conductivity at the under-drip level and in the Eucalyptus soil occupations and grass during the study period.
Cite this article:
Kajeiou Hamza, Malki Nadia, Marjaa Hanae, Azougay Abdallah, SBAA Mohammed. Health and Environmental Impact of the reuse of treated wastewater for Irrigation in the Ecological park of the city of Oujda (Eastern Morocco). Research Journal of Pharmacy and Technology. 2025;18(6):2485-2. doi: 10.52711/0974-360X.2025.00355
Cite(Electronic):
Kajeiou Hamza, Malki Nadia, Marjaa Hanae, Azougay Abdallah, SBAA Mohammed. Health and Environmental Impact of the reuse of treated wastewater for Irrigation in the Ecological park of the city of Oujda (Eastern Morocco). Research Journal of Pharmacy and Technology. 2025;18(6):2485-2. doi: 10.52711/0974-360X.2025.00355 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-6-8
REFERENCES:
1 D. R. Hirzel, K. Steenwerth, S. J. Parikh, and A. Oberholster. Impact of winery wastewater irrigation on soil , grape and wine composition,” Agric. Water Manag. 2017; 180: 178–189 doi: 10.1016/j.agwat.2016.10.019.
2 L. S. Pereira, T. Oweis, and A. Zairi. Irrigation management under water scarcity. Agric. Water Manag. 2002; 57(3): 175–206 doi: 10.1016/S0378-3774(02)00075-6.
3 L. Mandi and N. Ouazzani. Water and wastewater management in Morocco: Biotechnologies application. Sustain. Sanit. Pract. 2013; 13: 9–16.
4 N. A. Alygizakis et al.Evaluation of chemical and biological contaminants of emerging concern in treated wastewater intended for agricultural reuse. Environ. Int. 2020; 38(2): 105597, doi: 10.1016/j.envint.2020.105597.
5 R. Erel et al. Long-term irrigation with reclaimed wastewater : Implications on nutrient management, soil chemistry and olive ( Olea europaea L .) performance. Agric. Water Manag. 2019; 213(7): 324–335, doi: 10.1016/j.agwat.2018.10.033.
6 L. Surinaidu, P. Kumar, S. Ahmed, M. Hussain, and M. J. Nandan. Impact of urban wastewater reuse for irrigation on hydro-agro-ecological systems and human health risks : A case study from Musi river basin, South India. Hydro Research. 2023; 6: 122–129 doi: 10.1016/j.hydres.2023.03.001.
7 Y. Mehmood, M. Arshad, and K. Harald. Effects of wastewater reuse on perceived health risks of farmers in Pakistan : Application of the Zero-Inflated Poisson regression model. J. Clean. Prod. 2022; 369 doi: 10.1016/j.jclepro.2022.133430.
8 L. P. Leonel and A. L. Tonetti. Wastewater reuse for crop irrigation: Crop yield, soil and human health implications based on giardiasis epidemiology. Sci. Total Environ. 2021; 775: 145833 doi: 10.1016/j.scitotenv.2021.145833.
9 M. Oubane, A. Khadra, A. Ezzariai, L. Kouisni, and M. Hafidi. Heavy metal accumulation and genotoxic effect of long-term wastewater irrigated peri-urban agricultural soils in semiarid climate. Sci. Total Environ. 2021; 794: 2021, doi: 10.1016/j.scitotenv.2021.148611.
10 P. S. Minhas and R. K. Yadav. Long-term impact of wastewater irrigation and nutrient rates II . Nutrient balance , nitrate leaching and soil properties under peri-urban cropping systems. Agric. Water Manag. 2015; 156: 110–117 doi: 10.1016/j.agwat.2015.04.001.
11 C. Becerra-castro, A. Rita, I. Vaz-moreira, E. F. Silva, C. M. Manaia, and O. C. Nunes. Wastewater reuse in irrigation : A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015; 75: 117–135 doi: 10.1016/j.envint.2014.11.001.
12 H. Soleimani, B. Mansouri, A. Kiani, and A. Khalid. Ecological risk assessment and heavy metals accumulation in agriculture soils irrigated with treated wastewater effluent , river water , and well water combined with chemical fertilizers. Heliyon. 2023; 9(3): e14580 doi: 10.1016/j.heliyon.2023.e14580.
13 V. Ribeiro, T. G. Mendonc, R. Gaspar, and C. F. Souza, “Effects of treated wastewater irrigation on soil properties and lettuce yield,” Agric. Water Manag., vol. 181, pp. 108–115, 2017, doi: 10.1016/j.agwat.2016.12.001.
14 I. Angin, A. V. Yaganoglu, and M. Turan. Effects of long-term wastewater irrigation on soil properties. J. Sustain. Agric. 2005; 26(3): 31–42 doi: 10.1300/J064v26n03_05.
15 F. García-Orenes, F. Caravaca, A. Morugán-Coronado, and A. Roldán, “Prolonged irrigation with municipal wastewater promotes a persistent and active soil microbial community in a semiarid agroecosystem,” Agric. Water Manag. 2015; 149: 115–122 doi: 10.1016/j.agwat.2014.10.030.
16 S. A. Shahid. Developments in Soil Salinity Assessment , Modeling , Mapping , and Monitoring from Regional to Submicroscopic Scales. Dev. soil Salin. Assess. Reclam. Innov. Think. use Marg. soil water Resour. Irrig. Agric. 2013; 3–43 doi: 10.1007/978-94-007-5684-7.
17 G. Ganjegunte, A. Ulery, G. Niu, and Y. Wu. Effects of treated municipal wastewater irrigation on soil properties, switchgrass biomass production and quality under arid climate. Ind. Crop. Prod. 2017; 99: 60–69 doi: 10.1016/j.indcrop.2017.01.038.
18 V. N. Chaganti et al. Effects of treated urban wastewater irrigation on bioenergy sorghum and soil quality. Agric. Water Manag. 2019; 228: 105894 doi: 10.1016/j.agwat.2019.105894.
19 P. De las Heras, J., and Mañas. Reclaimed Wastewater to Irrigate Olive Groves and Vineyards : Effects on Soil Properties. Agronomy. 2020; 10(5); 649.
20 M. Farhadkhani, M. Nikaeen, and G. Yadegarfar. Effects of irrigation with secondary treated wastewater on physicochemical and microbial properties of soil and produce safety in a semi-arid area. Water Res. 2018; 144: 356–364 doi: 10.1016/j.watres.2018.07.047.
21 T. El Moussaoui, L. Mandi, S. Wahbi, S. Masi, and N. Ouazzani. Soil proprieties and alfalfa (Medicago sativa L.) responses to sustainable treated urban wastewater reuse. Arch. Agron. Soil Sci. 2019; 65(13): 1900–1912 doi: 10.1080/03650340.2019.1580359.
22 F. Pedrero, S. R. Grattan, A. Ben-gal, and G. A. Vivaldi. Opportunities for expanding the use of wastewaters for irrigation of olives. Agric. Water Manag. 2020; 241: 106333 doi: 10.1016/j.agwat.2020.106333.
23 L. Rusan, M. J. M., Hinnawi, S., and Rousan. Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination. 2006; 215: 143–152 doi: 10.1016/j.desal.2006.10.032.
24 A. Zolti, S. J. Green, E. Ben, Y. Hadar, and D. Minz. Science of the Total Environment Root microbiome response to treated wastewater irrigation. Sci. Total Environ. 2019; 655: 899–907 doi: 10.1016/j.scitotenv.2018.11.251.
25 I. Jaramillo, M. F., and Restrepo. Wastewater Reuse in Agriculture : A Review about Its Limitations and Benefits. Sustainability. 2017; 9(10): 1734 doi: 10.3390/su9101734.
26 Z. Muyen, G. A. Moore, and R. J. Wrigley. Soil salinity and sodicity effects of wastewater irrigation in South East Australia. Agric. Water Manag. 2011; 99(1): 33–41 doi: 10.1016/j.agwat.2011.07.021.
27 G. Kaplan, M. Ga, A. Abuelgasim, and M. Ibrahim. Soil salinity prediction using Machine Learning and Sentinel – 2 Remote Sensing Data in Hyper – Arid areas. Phys. Chem. Earth. 2023; 130: 103400 doi: 10.1016/j.pce.2023.103400.
28 M. J. Mohammad and N. Mazahreh. Changes in Soil Fertility Parameters in Response to Irrigation of Forage Crops with Secondary Treated Wastewater. Commun. Soil Sci. Plant Anal. 2003; 34(9–10): 1281–1294 doi: 10.1081/CSS-120020444.
29 S. Sadeghi, B. Jean, J. J. Steffan, E. C. Brevik, and C. Gedeon. Predicting microbial responses to changes in soil physical and chemical properties under different land management. Appl. Soil Ecol. 2023; 188: 104878 doi: 10.1016/j.apsoil.2023.104878.
30 A. R. Lopes, C. Becerra-castro, I. Vaz-moreira, M. Manaia, M. E. F. Silva, and O. C. Nunes. Irrigation with Treated Wastewater : Potential Impacts on Microbial Function and Diversity in Agricultural Soils. Wastewater Reuse Curr. Challenges. 2015: 105–128 doi: 10.1007/698.
31 M. Adrover, E. Farrús, G. Moyà, and J. Vadell. Chemical properties and biological activity in soils of Mallorca following twenty years of treated wastewater irrigation. J. Environ. Manage. 2012; 95: S188–S192 doi: 10.1016/j.jenvman.2010.08.017.
32 S. Ofori, A. Pu, and R. Iveta. Treated wastewater reuse for irrigation : Pros and cons. Sci. Total Environ. 2020; 760. doi: 10.1016/j.scitotenv.2020.144026.
33 L. Yi, W. Jiao, X. Chen, and W. Chen. An overview of reclaimed water reuse in China. J. Environ. Sci. 2011; 23(10): 1585–1593 doi: 10.1016/S1001-0742(10)60627-4.
34 S. Khalid, M. Shahid, I. Bibi, A. H. Shah, and N. K. Niazi. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. Int. J. Environ. Res. Public Health. 2018; 15(5); 895 doi: 10.3390/ijerph15050895.
35 E. B. Solomon, S. Yaron, and K. R. Matthews. Transmission of Escherichia coli O157 : H7 from Contaminated Manure and Irrigation Water to Lettuce Plant Tissue and Its Subsequent Internalization. Appl. Environ. Microbiol. 2002; 68(1): 397–400doi: 10.1128/AEM.68.1.397.
36 M. Steele and J. Odumeru. Irrigation Water as Source of Foodborne Pathogens on Fruit and Vegetables. J. Food Prot. 2004; 67(12): 2839–2849 doi: 10.4315/0362-028X-67.12.2839.
37 M. R. Wachtel, L. C. Whitehand, and R. E. Mandrell. Association of Escherichia coli O157 : H7 with Preharvest Leaf Lettuce upon Exposure to Contaminated Irrigation Water. J. Food Prot. 2002; 65(1): 18–25 doi: 10.4315/0362-028X-65.1.18.
38 Hussain, Intizar et al. Wastewater use in agriculture: Review of impacts and methodological issues in valuing impacts. Int. Water Manag. Institute, Colombo, Sri Lanka, p. Working Paper 37, 2002.
39 A. Rassam et al. Caractéristiques physico-chimiques Des eaux usées brutes de la ville D ’ Oujda ( MAROC ). Les Technol. Lab. 2012; 7(28): 70–78.
40 M. Abouelouafa, H. E. L. Halouani, M. Kharboua, and A. Berrichi. Caractérisation physico-chimique et bactériologique des eaux usées brutes de la ville d ’ Oujda : canal principal et Oued Bounaïm. Rev. Marocaine des Sci. Agron. Vétérinaires. 2002; 22(3): 143–15.
41 F. Jelti, A. Allouhi, S. G. Al-ghamdi, R. Saadani, A. Jamil, and M. Rahmoune. Environmental life cycle assessment of alternative fuels for city buses : A case study in Oujda city , Morocco. Int. J. Hydrogen Energy. 2021; 46(49): 25308–25319 doi: 10.1016/j.ijhydene.2021.05.024.
42 H. Kajeiou, M. Sbaa, and A. Darmous, “Physico-chemical , chemical and biological characterization of wastewater treatment plant of Oujda ( Eastern Morocco ) and possibility of reuse in irrigation,” Mater. Today Proc., vol. 72, pp. 3326–3335, 2023, doi: 10.1016/j.matpr.2022.07.355.
43 U. J. Blumenthal, D. D. Mara, A. Peasey, G. Ruiz-palacios, and R. Stott, “Guidelines for the microbiological quality of treated wastewater used in agriculture : recommendations for revising WHO guidelines,” vol. 78, no. 9. pp. 1104–1116, 2000.
44 F.A.O, “Irrigation avec des eaux usées traitées – Manuel d’utilisation.” 2003.
45 U.S. Environmental Protection Agency, “Guidelines for Water Reuse,” no. September. 2012.
46 Programme des nations unies pour l’environnement - Plan d’action pour la méditérranée, “LIGNES DIRECTRICES POUR L’UTILISATION DES EAUX USÉES MUNICIPALES DANS LA REGION MEDITERRANEENNE.” pp. 01–41, 2005.
47 de l’habitat et de l’environnement Ministre de l’équipement et du ministre chargé de l’aménagement du territoire, de l’urbanisme, “Arrêté conjoint n° 1276/01 : Normes de qualité des eaux destinées à l’irrigation.” pp. 1–3, 2002.
48 Ohwoghere Asuma, “Impact of degradation processes on physical and chemical properties of soils in Delta State of the Niger Delta,” J. Geol. Min. Res., vol. 4, no. 2, pp. 27–40, 2012, doi: 10.5897/jgmr11.022.
49 S. Ayoub, S. Al-Shdiefat, H. Rawashdeh, and I. Bashabsheh, “Utilization of reclaimed wastewater for olive irrigation: Effect on soil properties, tree growth, yield and oil content,” Agric. Water Manag., vol. 176, pp. 163–169, 2016, doi: 10.1016/j.agwat.2016.05.035.
50 D. M. Andrews, T. Robb, H. Elliott, and J. E. Watson, “Impact of long-term wastewater irrigation on the physicochemical properties of humid region soils: ‘The Living Filter’ site case study,” Agric. Water Manag., vol. 178, pp. 239–247, 2016, doi: 10.1016/j.agwat.2016.10.001.
51 T. P. Abegunrin, G. O. Awe, D. O. Idowu, and M. A. Adejumobi, “Impact of wastewater irrigation on soil physico-chemical properties, growth and water use pattern of two indigenous vegetables in southwest Nigeria,” Catena, vol. 139, pp. 167–178, 2016, doi: 10.1016/j.catena.2015.12.014.
52 S. Bedbabis, B. Ben Rouina, M. Boukhris, and G. Ferrara, “Effect of irrigation with treated wastewater on soil chemical properties and infiltration rate,” J. Environ. Manage., vol. 133, pp. 45–50, 2014, doi: 10.1016/j.jenvman.2013.11.007.
53 W. Zhang, L. Chao, Q. Yang, Q. Wang, Y. Fang, and S. Wang, “Litter quality mediated nitrogen effect on plant litter decomposition regardless of soil fauna presence,” Ecology, vol. 97, no. 10, pp. 2834–2843, 2016, doi: 10.1002/ecy.1515.
54 G. Kalinkat, U. Brose, and B. C. Rall, “Habitat structure alters top-down control in litter communities,” Oecologia, vol. 172, no. 3, pp. 877–887, 2013, doi: 10.1007/s00442-012-2530-6.
55 C. Zhao et al., “Impacts of litter addition and root presence on soil nematode community structure in a young Eucalyptus plantation in southern China,” For. Ecol. Manage., vol. 479, no. June 2020, p. 118633, 2021, doi: 10.1016/j.foreco.2020.118633.
56 K. A. Merghem et al., “Impact of raw and treated wastewater on quality surface water of Wadi Bani Houat (Sanaa Basin) Study spatial - temporal),” J. Mater. Environ. Sci., vol. 7, no. 5, pp. 1516–1530, 2016.
57 N. Ait-Mouheb et al., “Effect of untreated or reclaimed wastewater drip-irrigation for lettuces and leeks on yield, soil and fecal indicators,” Resour. Environ. Sustain., vol. 8, no. December 2021, p. 100053, 2022, doi: 10.1016/j.resenv.2022.100053.
58 K. Ibrahimi, K. Ben Attia, R. Amami, J. H. P. Américo-Pinheiro, and F. Sher, “Assessment of three decades treated wastewater impact on soil quality in semi-arid agroecosystem,” J. Saudi Soc. Agric. Sci., vol. 21, no. 8, pp. 525–535, 2022, doi: 10.1016/j.jssas.2022.03.002.
59 S. Chaoua, S. Boussaa, A. El Gharmali, and A. Boumezzough, “Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco,” J. Saudi Soc. Agric. Sci., vol. 18, no. 4, pp. 429–436, 2019, doi: 10.1016/j.jssas.2018.02.003.
60 A. M. Ibekwe, A. Gonzalez-Rubio, and D. L. Suarez, “Impact of treated wastewater for irrigation on soil microbial communities,” Sci. Total Environ., vol. 622–623, pp. 1603–1610, 2018, doi: 10.1016/j.scitotenv.2017.10.039.
61 S. O. Oladele, M. Ingold, and A. Buerkert, “Impact of biochar-compost derived from thermal pyrolysis of poultry litter and woodchips on N mineralization and maize growth in contrasting tropical dryland soils,” Bioresour. Technol. Reports, vol. 20, no. September, p. 101225, 2022, doi: 10.1016/j.biteb.2022.101225.
62 X. Zhang, Q. Zhao, L. M. Wei, Q. Y. Sun, and D. H. Zeng, “Tree roots exert greater impacts on phosphorus fractions than aboveground litter in mineral soils under a Pinus sylvestris var. mongolica plantation,” For. Ecol. Manage., vol. 545, no. June, p. 121242, 2023, doi: 10.1016/j.foreco.2023.121242.
63 A. Núñez, M. F. Cotrufo, and M. Schipanski, “Irrigation effects on the formation of soil organic matter from aboveground plant litter inputs in semiarid agricultural systems,” Geoderma, vol. 416, no. October 2021, 2022, doi: 10.1016/j.geoderma.2022.115804.
64 T. R. Rupa, C. S. Rao, A. S. Rao, and M. Singh, “Effects of farmyard manure and phosphorus on zinc transformations and phyto-availability in two alfisols of India,” Bioresour. Technol., vol. 87, no. 3, pp. 279–288, 2003, doi: 10.1016/S0960-8524(02)00235-3.
65 H. Mouhanni, A. Bendou, and S. Er-Raki, “Disinfection of treated wastewater and its reuse in the irrigation of golf grass: The case of plant M’zar Agadir-Morocco,” Water (Switzerland), vol. 3, no. 4, pp. 1128–1138, 2011, doi: 10.3390/w3041128.
66 L. Candela, S. Fabregat, A. Josa, J. Suriol, N. Vigués, and J. Mas, “Assessment of soil and groundwater impacts by treated urban wastewater reuse. A case study: Application in a golf course (Girona, Spain),” Sci. Total Environ., vol. 374, no. 1, pp. 26–35, 2007, doi: 10.1016/j.scitotenv.2006.12.028.
67 Y. You et al., “Litter leachates transform soil bacterial composition enhancing nitrogen fixation in alpine meadow,” Appl. Soil Ecol., vol. 189, no. June 2022, p. 104979, 2023, doi: 10.1016/j.apsoil.2023.104979.
68 I. T. Handa et al., “Consequences of biodiversity loss for litter decomposition across biomes,” Nature, vol. 509, no. 7499, pp. 218–221, 2014, doi: 10.1038/nature13247.
69 S. K. Chapman and G. S. Newman, “Biodiversity at the plant-soil interface: Microbial abundance and community structure respond to litter mixing,” Oecologia, vol. 162, no. 3, pp. 763–769, 2010, doi: 10.1007/s00442-009-1498-3.
70 C. Aponte et al., “Soil nutrients and microbial biomass in three contrasting Mediterranean forests,” Plant Soil, vol. 380, no. 1, pp. 57–72, 2014, doi: 10.1007/s11104-014-2061-5.
71 F. Grosso, E. Bååth, and F. De Nicola, “Bacterial and fungal growth on different plant litter in Mediterranean soils: Effects of C/N ratio and soil pH,” Appl. Soil Ecol., vol. 108, pp. 1–7, 2016, doi: 10.1016/j.apsoil.2016.07.020.
72 C. Thoms, A. Gattinger, M. Jacob, F. M. Thomas, and G. Gleixner, “Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest,” Soil Biol. Biochem., vol. 42, no. 9, pp. 1558–1565, 2010, doi: 10.1016/j.soilbio.2010.05.030.
73 E. Hackl, M. Pfeffer, C. Donat, G. Bachmann, and S. Zechmeister-Boltenstern, “Composition of the microbial communities in the mineral soil under different types of natural forest,” Soil Biol. Biochem., vol. 37, no. 4, pp. 661–671, 2005, doi: 10.1016/j.soilbio.2004.08.023.
74 J. A. Schweitzer et al., “Forest gene diversity is correlated with the composition and function of soil microbial communities,” Popul. Ecol., vol. 53, no. 1, pp.35–46, 2011, doi:10.1007/s10144-010-0252-3.
75 J. H. Whitehead and P. M. Geary, “Geotechnical aspects of domestic on-site effluent management systems,” Aust. J. Earth Sci., vol. 47, no. 1, pp. 75–82, 2000, doi: 10.1046/j.1440-0952.2000.00769.x.
76 I. M. Verstraeten, G. S. Fetterman, M. J. Meyer, T. Bullen, and S. K. Sebree, “Use of tracers and isotopes to evaluate vulnerability of water in domestic wells to septic waste,” Gr. Water Monit. Remediat., vol. 25, no. 2, pp. 107–117, 2005, doi: 10.1111/j.1745-6592.2005.0015.x.