Author(s):
Faraha Ahmed, Syed Sufian Ahmad, Abul Kalam Najmi, Mohammad Ahmed Khan
Email(s):
ahmedfaraha@gmail.com , sufsahmad22@gmail.com , aknajmi@jamiahamdard.ac.in , khan.ahmed1511@gmail.com
DOI:
10.52711/0974-360X.2025.00415
Address:
Faraha Ahmed, Syed Sufian Ahmad, Abul Kalam Najmi, Mohammad Ahmed Khan*
Department of Pharmacology, School of Pharmaceutical Sciences and Research, Jamia Hamdard, New Delhi 110062.
*Corresponding Author
Published In:
Volume - 18,
Issue - 6,
Year - 2025
ABSTRACT:
Ageing population progressively develops issues with skeletal health. One such major skeletal disorder is osteoporosis, that is sparked with imbalanced bone remodelling and is characterised by weak bones, altered microarchitecture along with increased fragility. These bone alterations commonly lead to vertebral or hip fractures in elderly. The physiological activities are regulated by sympathetic and parasympathetic nervous system. Evidence from experimental and clinical studies revealed significant role of sympathetic nervous system in bone homeostasis including osteoporosis. The bone remodelling isalso mediated by adrenergic neurons and its transmitters whichregulated by hypothalamus. The sympathetic signalling is also crucial for the osteoporosis development especially after menopause. In order to assess newer treatments for the disease, the potential role of sympathetic nervous system towards the development of osteoporosis is being investigated. The review outlines the evidences about significant role of sympathetic communication in bone remodelling with specific influence on osteoporosis.
Cite this article:
Faraha Ahmed, Syed Sufian Ahmad, Abul Kalam Najmi, Mohammad Ahmed Khan. Osteoporosis and Sympathetic Nerve Activity: A Review. Research Journal of Pharmacy and Technology. 2025;18(6):2884-9. doi: 10.52711/0974-360X.2025.00415
Cite(Electronic):
Faraha Ahmed, Syed Sufian Ahmad, Abul Kalam Najmi, Mohammad Ahmed Khan. Osteoporosis and Sympathetic Nerve Activity: A Review. Research Journal of Pharmacy and Technology. 2025;18(6):2884-9. doi: 10.52711/0974-360X.2025.00415 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-6-68
REFERENCES:
1. Suman V, Chattterjee PK, Vinodini N, Kunal K, Gokul M, Bhat RM. Effect of variable diet and physical activity on bone mineral density in adults using peripheral-Dexa scan. Res J Pharm Technol. 2018; 11(6): 2404. doi:10.5958/0974-360X.2018.00444.4
2. Simon A, Schäfer HS, Schmidt FN, Stürznickel J, Amling M, Rolvien T. Compartment‐specific effects of muscle strength on bone microarchitecture in women at high risk of osteoporosis. J Cachexia Sarcopenia Muscle. 2022; 13(5): 2310-2321. doi:10.1002/jcsm.13044
3. Lorentzon M, Johansson H, Harvey NC, et al. Osteoporosis and fractures in women: the burden of disease. Climacteric. 2022;25(1):4-10. doi:10.1080/13697137.2021.1951206
4. Radhakrishna B. Current and Future Trends of Drugs Used in Osteoporosis. Res J Pharmacol Pharmacodyn. 2011;3(6):329-333.
5. Prahasanti C, Perdana S. The Roles of Insulin Growth Factors-1 (IGF-1) in Bone Graft to increase Osteogenesis. Res J Pharm Technol. Published online April 23, 2022: 1737-1742. doi:10.52711/0974-360X.2022.00291
6. Cotts KG, Cifu AS. Treatment of Osteoporosis. JAMA. 2018; 319(10): 1040. doi:10.1001/jama.2017.21995
7. Patel D, Wairkar S. Bone regeneration in osteoporosis: opportunities and challenges. Drug Deliv Transl Res. 2023; 13(2): 419-432. doi:10.1007/s13346-022-01222-6
8. Srivastava A, Mishra A, Rai AK. NSAIDs-Alendronate based Prodrug for Bone specific drug Targeting. Res J Pharm Technol. 2020; 13(7): 3520. doi:10.5958/0974-360X.2020.00623.X
9. George R. Effectiveness of self-instructional module on prevention of osteoporosis among middle aged women who are attending orthopaedic outpatient department in selected hospital, Bangalore. Int J Nurs Educ Res. 2020; 8(4): 525-528. doi:10.5958/2454-2660.2020.00116.7
10. Boyes NG, Marciniuk DD, Haddad H, Tomczak CR. Autonomic cardiovascular reflex control of hemodynamics during exercise in heart failure with reduced ejection fraction and the effects of exercise training. Rev Cardiovasc Med. 2022; 23(2): 072. doi:10.31083/j.rcm2302072
11. Zhang W, Liu Y, Xu J, et al. The Role of Sympathetic Nerves in Osteoporosis: A Narrative Review. Biomedicines. 2022; 11(1):33. doi:10.3390/biomedicines11010033
12. Reid IR. Effects of beta-blockers on fracture risk. J Musculoskelet Neuronal Interact. 2008;8(2):105-110.
13. He J-Y, Jiang L-S, Dai L-Y. The roles of the sympathetic nervous system in osteoporotic diseases: A review of experimental and clinical studies. Ageing Res Rev. 2011; 10(2): 253-263. doi:10.1016/j.arr.2011.01.002
14. Guo Q, Chen N, Qian C, et al. Sympathetic Innervation Regulates Osteocyte‐Mediated Cortical Bone Resorption during Lactation. Adv Sci. 2023;10(18). doi:10.1002/advs.202207602
15. Bellinger DL, Wood C, Wergedal JE, Lorton D. Driving β2- While Suppressing α-Adrenergic Receptor Activity Suppresses Joint Pathology in Inflammatory Arthritis. Front Immunol. 2021;12. doi:10.3389/fimmu.2021.628065
16. Veshchitskii AA, Kirik O V., Korzhevskii DE, Merkulyeva N. Development of neurochemical labeling in the intermediolateral nucleus of cats’ spinal cord. Anat Rec. 2023; 306(9): 2400-2410. doi:10.1002/ar.24943
17. Farmer DGS, Pracejus N, Dempsey B, et al. On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat. J Physiol. 2019;597(13):3407-3423. doi:10.1113/JP277661
18. Wang Z-M, Messi ML, Grinevich V, Budygin E, Delbono O. Postganglionic sympathetic neurons, but not locus coeruleus optostimulation, activates neuromuscular transmission in the adult mouse in vivo. Mol Cell Neurosci. 2020; 109: 103563. doi:10.1016/j.mcn.2020.103563
19. Kim SW, Chung SJ, Lee S, et al. Postganglionic Sudomotor Dysfunction and Brain Glucose Hypometabolism in Patients with Multiple System Atrophy. J Parkinsons Dis. 2021; 11(3): 1247-1256. doi:10.3233/JPD-202524
20. Hansen T, Tarasova OS, Khammy MM, et al. [Ca 2+ ] changes in sympathetic varicosities and Schwann cells in rat mesenteric arteries—Relation to noradrenaline release and contraction. Acta Physiol. 2019; 226(4). doi:10.1111/apha.13279
21. Berg T. Voltage-Sensitive K+ Channels Inhibit Parasympathetic Ganglion Transmission and Vagal Control of Heart Rate in Hypertensive Rats. Front Neurol. 2015; 6. doi:10.3389/fneur.2015.00260
22. Motiejunaite J, Amar L, Vidal-Petiot E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol (Paris). 2021; 82(3-4): 193-197. doi:10.1016/j.ando.2020.03.012
23. Mulcahy L, Tudor E, Bailey SR. Validation of canine uterine and testicular arteries for the functional characterisation of receptor-mediated contraction as a replacement for laboratory animal tissues in teaching. PLoS One. 2020; 15(5): e0230516. doi:10.1371/journal.pone.0230516
24. Al Katat A, Zhao J, Calderone A, Parent L. Sympathetic Stimulation Upregulates the Ca2+ Channel Subunit, CaVα2δ1, via the β1 and ERK 1/2 Pathway in Neonatal Ventricular Cardiomyocytes. Cells. 2022; 11(2): 188. doi:10.3390/cells11020188
25. Myagmar B-E, Flynn JM, Cowley PM, et al. Adrenergic Receptors in Individual Ventricular Myocytes. Circ Res. 2017; 120(7): 1103-1115. doi:10.1161/CIRCRESAHA.117.310520
26. Fonseca TL, Jorgetti V, Costa CC, et al. Double disruption of α2A- and α2C -adrenoceptors results in sympathetic hyperactivity and high-bone-mass phenotype. J Bone Miner Res. 2011; 26(3): 591-603. doi:10.1002/jbmr.243
27. Ma Y, Nyman JS, Tao H, Moss HH, Yang X, Elefteriou F. β2-Adrenergic Receptor Signaling in Osteoblasts Contributes to the Catabolic Effect of Glucocorticoids on Bone. Endocrinology. 2011; 152(4): 1412-1422. doi:10.1210/en.2010-0881
28. Suga S, Goto S, Togari A. Demonstration of Direct Neurite–Osteoclastic Cell Communication In Vitro via the Adrenergic Receptor. J Pharmacol Sci. 2010; 112(2): 184-191. doi:10.1254/jphs.09283FP
29. Azuma K, Adachi Y, Hayashi H, Kubo K-Y. Chronic Psychological Stress as a Risk Factor of Osteoporosis. J UOEH. 2015; 37(4): 245-253. doi:10.7888/juoeh.37.245
30. Bouxsein ML, Devlin MJ, Glatt V, Dhillon H, Pierroz DD, Ferrari SL. Mice Lacking β-Adrenergic Receptors Have Increased Bone Mass but Are Not Protected from Deleterious Skeletal Effects of Ovariectomy. Endocrinology. 2009; 150(1): 144-152. doi:10.1210/en.2008-0843
31. Roshanzamir S, Dabbaghmanesh MH, Dabbaghmanesh A, Nejati S. Autonomic dysfunction and osteoporosis after electrical burn. Burns. 2016; 42(3): 583-588. doi:10.1016/j.burns.2015.09.009
32. Enríquez-Pérez IA, Galindo-Ordoñez KE, Pantoja-Ortíz CE, et al. Streptozocin-induced type-1 diabetes mellitus results in decreased density of CGRP sensory and TH sympathetic nerve fibers that are positively correlated with bone loss at the mouse femoral neck. Neurosci Lett. 2017;655:28-34. doi:10.1016/j.neulet.2017.06.042
33. Stephens CJM, McGibbon DH. Algodystrophy (reflex sympathetic dystrophy) complicating unilateral acrodermatitis continua. Clin Exp Dermatol. 1989; 14(6): 445-447. doi:10.1111/j.1365-2230.1989.tb02609.x
34. Zhang W, Kanehara M, Zhang Y, Wang X, Ishida T. β-Blocker and Other Analogous Treatments that Affect Bone Mass and Sympathetic Nerve Activity in Ovariectomized Rats. Am J Chin Med. 2007;35(01):89-101. doi:10.1142/S0192415X07004655
35. Ahmad SS, Ahmed F, Ali R, et al. Immunology of osteoporosis: Relevance of inflammatory targets for the development of novel interventions. Immunotherapy. 2022; 14(10): 815-831. doi:10.2217/imt-2021-0282
36. Padmanabhan K, Paul J, Sudhakar S, Selvam PS, Priya VS, Kirthika SV. Which is more prevalent among the female population-Osteopenia or Osteoporosis? A cross sectional study. Res J Pharm Technol. 2019; 12(3): 1163. doi:10.5958/0974-360X.2019.00192.6
37. Omosule CL, Phillips CL. Deciphering Myostatin’s Regulatory, Metabolic, and Developmental Influence in Skeletal Diseases. Front Genet. 2021;12. doi:10.3389/fgene.2021.662908
38. Ma Y, Krueger JJ, Redmon SN, et al. Extracellular Norepinephrine Clearance by the Norepinephrine Transporter Is Required for Skeletal Homeostasis. J Biol Chem. 2013;288(42):30105-30113. doi:10.1074/jbc.M113.481309
39. Wang Z, Liu Y, Zhang J, et al. Mechanical loading alleviated the inhibition of β2‐adrenergic receptor agonist terbutaline on bone regeneration. FASEB J. 2021; 35(12). doi:10.1096/fj.202101045RR
40. Wu Y, Zhang Q, Zhao B, Wang X. Effect and mechanism of propranolol on promoting osteogenic differentiation and early implant osseointegration. Int J Mol Med. 2021; 48(4): 191. doi:10.3892/ijmm.2021.5024
41. Uemura T, Ohta Y, Nakao Y, Manaka T, Nakamura H, Takaoka K. Epinephrine accelerates osteoblastic differentiation by enhancing bone morphogenetic protein signaling through a cAMP/protein kinase A signaling pathway. Bone. 2010; 47(4): 756-765. doi:10.1016/j.bone.2010.07.008
42. Li H, Fong C, Chen Y, Cai G, Yang M. β2- and β3-, but not β1-adrenergic receptors are involved in osteogenesis of mouse mesenchymal stem cells via cAMP/PKA signaling. Arch Biochem Biophys. 2010; 496(2): 77-83. doi:10.1016/j.abb.2010.01.016
43. Choi YJ, Lee JY, Lee SJ, Chung C-P, Park YJ. Alpha-adrenergic blocker mediated osteoblastic stem cell differentiation. Biochem Biophys Res Commun. 2011; 416(3-4): 232-238. doi:10.1016/j.bbrc.2011.09.095
44. He JY, Zheng XF, Jiang SD, Chen XD, Jiang LS. Sympathetic neuron can promote osteoblast differentiation through BMP signaling pathway. Cell Signal. 2013; 25(6): 1372-1378. doi:10.1016/j.cellsig.2013.02.016
45. Yamada T, Ezura Y, Hayata T, et al. β₂ Adrenergic Receptor Activation Suppresses Bone Morphogenetic Protein (BMP)‐Induced Alkaline Phosphatase Expression in Osteoblast‐Like MC3T3E1 Cells. J Cell Biochem. 2015; 116(6): 1144-1152. doi:10.1002/jcb.25071
46. de Vries F, Pouwels S, Bracke M, et al. Use of beta‐2 agonists and risk of hip/femur fracture: a population‐based case‐control study. Pharmacoepidemiol Drug Saf. 2007; 16(6): 612-619. doi:10.1002/pds.1318
47. Pasco JA, Henry MJ, Sanders KM, Kotowicz MA, Seeman E, Nicholson GC. β-Adrenergic Blockers Reduce the Risk of Fracture Partly by Increasing Bone Mineral Density: Geelong Osteoporosis Study. J Bone Miner Res. 2004; 19(1): 19-24. doi:10.1359/jbmr.0301214
48. Arnett TR, Orriss IR. Metabolic properties of the osteoclast. Bone. 2018; 115: 25-30. doi:10.1016/j.bone.2017.12.021
49. Ewanchuk BW, Arnold CR, Balce DR, et al. A non-immunological role for γ-interferon–inducible lysosomal thiol reductase (GILT) in osteoclastic bone resorption. Sci Adv. 2021; 7(17). doi:10.1126/sciadv.abd3684
50. Martens A, Hertens P, Priem D, et al. <scp>A20</scp> controls <scp>RANK</scp> ‐dependent osteoclast formation and bone physiology. EMBO Rep. 2022; 23(12). doi:10.15252/embr.202255233
51. Okada Y, Hamada N, Kim Y, et al. Blockade of sympathetic β-receptors inhibits Porphyromonas gingivalis-induced alveolar bone loss in an experimental rat periodontitis model. Arch Oral Biol. 2010; 55(7): 502-508. doi:10.1016/j.archoralbio.2010.04.002
52. Cao H, Kou X, Yang R, et al. Force-induced Adrb2 in Periodontal Ligament Cells Promotes Tooth Movement. J Dent Res. 2014; 93(11): 1163-1169. doi:10.1177/0022034514551769
53. Elefteriou F, Ahn JD, Takeda S, et al. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 2005; 434(7032): 514-520. doi:10.1038/nature03398
54. Frediani U, Becherini L, Lasagni L, Tanini A, Brandi ML. Catecholamines modulate growth and differentiation of human preosteoclastic cells. Osteoporos Int. 1996; 6(1): 14-21. doi:10.1007/BF01626532
55. Aitken SJ, Landao-Bassonga E, Ralston SH, Idris AI. β2-Adrenoreceptor ligands regulate osteoclast differentiation in vitro by direct and indirect mechanisms. Arch Biochem Biophys. 2009; 482(1-2): 96-103. doi:10.1016/j.abb.2008.11.012
56. Takeuchi T, Tsuboi T, Arai M, Togari A. Adrenergic stimulation of osteoclastogenesis mediated by expression of osteoclast differentiation factor in MC3T3-E1 osteoblast-like cells. Biochem Pharmacol. 2001; 61(5): 579-586. doi:10.1016/S0006-2952(00)00591-8
57. Pierroz DD, Bonnet N, Bianchi EN, et al. Deletion of β-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J Bone Miner Res. 2012; 27(6): 1252-1262. doi:10.1002/jbmr.1594
58. Strukov VI, Kislov AI, Eremina N V., et al. The use of Bone Tissue Non-Steroid Anabolizators in Treatment of Osteoporosis. Res J Pharm Technol. 2019; 12(5): 2195. doi:10.5958/0974-360X.2019.00366.4
59. Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D. Pharmacological Management of Osteoporosis in Postmenopausal Women: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2019; 104(5): 1595-1622. doi:10.1210/jc.2019-00221
60. Taylor EA, Donnelly E, Yao X, et al. Sequential Treatment of Estrogen Deficient, Osteopenic Rats with Alendronate, Parathyroid Hormone (1–34), or Raloxifene Alters Cortical Bone Mineral and Matrix Composition. Calcif Tissue Int. 2020; 106(3): 303-314. doi:10.1007/s00223-019-00634-w
61. Yavropoulou MP, Makras P, Anastasilakis AD. Bazedoxifene for the treatment of osteoporosis. https://doi.org/101080/1465656620191615882. 2019;20(10):1201-1210. doi:10.1080/14656566.2019.1615882
62. Nordstrom BL, Cai B, De Gregorio F, et al. Incidence of venous thromboembolism among postmenopausal women prescribed ospemifene, selective estrogen receptor modulators for noncancer indications, or untreated vulvar and vaginal atrophy. Menopause. 2020; 27(8): 864-871. doi:10.1097/GME.0000000000001552
63. Vestergaard P. New strategies for osteoporosis patients previously managed with strontium ranelate. Ther Adv Musculoskelet Dis. 2014; 6(6): 217-225. doi:10.1177/1759720X14552070
64. Fixen CW, Fixen DR. Renal safety of zoledronic acid for osteoporosis in adults 75 years and older. Osteoporos Int. 2022; 33(11): 2417-2422. doi:10.1007/s00198-022-06499-4
65. de Sousa VC, Sousa FRN, Vasconcelos RF, et al. Atorvastatin reduces zoledronic acid-induced osteonecrosis of the jaws of rats. Bone. 2022; 164:116523. doi:10.1016/j.bone.2022.116523
66. Yamamoto J, Nakazawa D, Nishio S, et al. Impact of Weekly Teriparatide on the Bone and Mineral Metabolism in Hemodialysis Patients With Relatively Low Serum Parathyroid Hormone: A Pilot Study. Ther Apher Dial. 2020; 24(2): 146-153. doi:10.1111/1744-9987.12867
67. Naik-Panvelkar P, Norman S, Elgebaly Z, et al. Osteoporosis management in Australian general practice: an analysis of current osteoporosis treatment patterns and gaps in practice. BMC Fam Pract. 2020;21(1):32. doi:10.1186/s12875-020-01103-2
68. Chen H, Hu B, Lv X, et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun. 2019; 10(1): 181. doi:10.1038/s41467-018-08097-7
69. Sato T, Miyazawa K, Suzuki Y, et al. Selective β2-adrenergic Antagonist Butoxamine Reduces Orthodontic Tooth Movement. J Dent Res. 2014; 93(8): 807-812. doi:10.1177/0022034514536730
70. Shimizu H, Nakagami H, Yasumasa N, et al. Cilnidipine, but not amlodipine, ameliorates osteoporosis in ovariectomized hypertensive rats through inhibition of the N-type calcium channel. Hypertens Res. 2012; 35(1): 77-81. doi:10.1038/hr.2011.143
71. Shimizu W, Ohe T, Kurita T, et al. Effects of verapamil and propranolol on early afterdepolarizations and ventricular arrhythmias induced by epinephrine in congenital long QT syndrome. J Am Coll Cardiol. 1995; 26(5): 1299-1309. doi:10.1016/0735-1097(95)00313-4