Author(s):
Sefanadia Putri, Sri Anna Marliyati, Budi Setiawan, Rimbawan Rimbawan
Email(s):
marliyati@apps.ipb.ac.id
DOI:
10.52711/0974-360X.2025.00403
Address:
Sefanadia Putri1,3, Sri Anna Marliyati2*, Budi Setiawan2, Rimbawan Rimbawan2
1Doctoral Program in Nutrition Sciences, Graduate School, Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, West Java, 16680, Indonesia.
2Departement of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor, West Java, 16680, Indonesia.
3Department of Nutrition, Tanjungkarang Health Polytechnic Ministry of Health Republic of Indonesia, Bandar Lampung, Indonesia.
*Corresponding Author
Published In:
Volume - 18,
Issue - 6,
Year - 2025
ABSTRACT:
Developing a novel GUALAM jelly drink represents an innovative approach to processing these two ingredients with an alternative healthy beverage to prevent diabetes. This study aims to determine total phenols, flavonoids, antioxidant activity, and a-Glucosidase inhibitory activity in GUALAM jelly drink as an anti-hyperglycemic effect. This experimental design is the preliminary research to analyze raw materials' total phenols, flavonoids, and antioxidant activity. A completely randomized design (CRD) was employed in the novel GUALAM jelly drink study. The analysis involved three groups with two replications, with ratios of 25:75, 50:50, and 75:25 for the bay leaf water extract and guava juice. Our study provides extensive evidence that GUALAM jelly drink is an excellent source of polyphenols with well-established antioxidant properties. Radical scavenging activity (RAS) of GUALAM jelly drink values greater than 80% are categorized as strong. All three jelly drink formulas have the highest capacity to inhibit enzymes a-glucosidase associated with diabetes mellitus. P2 and P3 stand out as the best formulations. GUALAM jelly drink has more good potential as an anti-hyperglycemic beverage.
Cite this article:
Sefanadia Putri, Sri Anna Marliyati, Budi Setiawan, Rimbawan Rimbawan. Novel Functional Jelly Drink as an Anti-Hyperglycemic effect. Research Journal of Pharmacy and Technology. 2025;18(6):2812-0. doi: 10.52711/0974-360X.2025.00403
Cite(Electronic):
Sefanadia Putri, Sri Anna Marliyati, Budi Setiawan, Rimbawan Rimbawan. Novel Functional Jelly Drink as an Anti-Hyperglycemic effect. Research Journal of Pharmacy and Technology. 2025;18(6):2812-0. doi: 10.52711/0974-360X.2025.00403 Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-6-56
REFERENCES:
1. Echouffo-Tcheugui, J. B.; Selvin, E. Prediabetes and What It Means: The Epidemiological Evidence. Annu. Rev. Public Health. 2020; 42: 59–77. https://doi.org/10.1146/annurev-publhealth-090419-102644.
2. World Health Organization. 2022.
3. Javeed, N.; Matveyenko, A. V. Circadian Etiology of Type 2 Diabetes Mellitus. Physiology. 2018; 33(2): 138–150. https://doi.org/10.1152/physiol.00003.2018.
4. MahadevaRao, U. .; Mohd, K. S.; Zulaikha, S.; Masitah. Screening of Phytochemicals and Comparative Antioxidant Activity of Leaf and Fruit of MalaysianMengkudu Using Aqueous and Organic Solvent Extracts. Res. J. Pharm. Tech. 2013; 6 (9): 1064–1072.
5. Victoria-Montesinos, D.; Sánchez-Macarro, M.; Gabaldón-Hernández, J. A.; Abellán-Ruiz, M. S.; Querol-Calderón, M.; Luque-Rubia, A. J.; Bernal-Morell, E.; Ávila-Gandía, V.; López-Román, F. J. Effect of Dietary Supplementation with a Natural Extract of Sclerocarya Birrea on Glycemic Metabolism in Subjects with Prediabetes: A Randomized Double-Blind Placebo-Controlled Study. Nutrients. 2021; 13(6). https://doi.org/10.3390/nu13061948.
6. Sundarrajan, T.; Velmurugan, V.; Srimathi, R. Phytochemical Evaluation and In Vitro Antidiabetic Activity of Ethanolic Extract of Alternanthera Ficodia Linn. Res. J. Pharm. Tech. 2017; 10(9): 2981–2983. https://doi.org/10.5958/0974-360X.2017.00527.3.
7. Mathew, J.; Arora, K. M.; Mazumdar, A.; Kumar, G.; Loganathan, K.; Rao, K. V. B. Evaluation of Phytochemical Composition and Antioxidant Activity of Aqueous Extract of Barleria Mysorensis and Furcraea Foetida Leaves. Res. J. Pharm. Tech. 2012; 5(12): 1503–1508.
8. Kanagavalli, M.; Anuradha, R. A. Study on Phytochemical Constituents and In Vitro Antioxidant Activity of Carica Papaya. Res. J. Pharm. Tech. 2012; 5(1): 119–120.
9. Roy, A.; Prasad, P. Study of Physicochemical, Preliminary Phytochemical and Antioxidant Activity of Calocybe Indica. Res. J. Pharm. Tech. 2016; 9(1): 53–59. https://doi.org/10.5958/0974-360X.2016.00010.X.
10. Azwar, A. Tanaman Obat Indonesia; Salemba Medika: Jakarta, 2010.
11. Dewijanti, I. D.; Artanti, N.; Mangunwardoyo, W.; Hanafi, M.; Abbas, J.; Megawati, M.; Minarti, M.; Musdalifah, D.; Meilawati, L. Bioactivities of Syzygium Polyanthum (Wight) Walp Leaf Extract for Decreasing Diabetic Risk. AIP Conf. Proc. 2018, 2024 (November 2018). https://doi.org/10.1063/1.5064297.
12. Syabana, M. A.; Yuliana, N. D.; Batubara, I.; Fardiaz, D. Antidiabetic Activity Screening and Nmr Profile of Vegetable and Spices Commonly Consumed in Indonesia. Food Sci. Technol. 2021; 41 (June): 254–264. https://doi.org/10.1590/fst.14120.
13. Ismail, A.; Ahmad, W. A. N. W. Syzygium Polyanthum (Wight) Walp: A Potential Phytomedicine. Pharmacogn. J. 2019, 11 (2), 429–438. https://doi.org/10.5530/pj.2019.11.67.
14. Sulastri, L.; Simanjuntak, P.; Sumaryono, W.; Djamil, R.; Ardiaynto, D.; Abdillah, S. Antidiabetic Formulation Development Based on Natural Materials As α-Glucosidase Enzyme Inhibitor. J. Hunan Univ. Nat. Sci. 2022; 49(1): 228–238. https://doi.org/10.55463/issn.1674-2974.49.1.29.
15. Khan; Singh, M. K.; Lavhale, P. M.; Kaushik, R. Phytochemical Screening and HPTLC Analysis of Bio-Active Markers of Ethanol Extract of Indian Bay Leaves. J. Herbs. Spices Med. Plants. 2022; 29 (2). https://doi.org/doi.org/10.1080/10496475.2022.2117253.
16. Rahim, E. N. A. A.; Ismail, A.; Omar, M. N.; Rahmat, U. N.; Ahmad, W. A. N. W. GC-MS Analysis of Phytochemical Compounds in Syzygium Polyanthum Leaves Extracted Using Ultrasound-Assisted Method. Pharmacogn. J. 2018; 10(1): 110–119. https://doi.org/10.5530/pj.2018.1.20.
17. Thakur, S.; Chaudhary, G. Review Based Upon Ayurvedic and Traditional Uses of Cinnamomum Tamala (Tejpatta). Int. J. Pharm. Sci. Rev. Res. 2021: 68(2); 71–78. https://doi.org/10.47583/ijpsrr.2021.v68i02.011.
18. Hanif, M. A.; Nawaz, H.; Khan, M. M.; Byrne, H. J. Medicinal Plants of South Asia; Elsevier: Amsterdam, Netherlands. 2020; 11. https://doi.org/10.1016/c2017-0-02046-3.
19. Syabana, M. A.; Yuliana, N. D.; Batubara, I.; Fardiaz, D. α-Glucosidase Inhibitors from Syzygium Polyanthum (Wight) Walp Leaves as Revealed by Metabolomics and in Silico Approaches. J. Ethnopharmacol. 2022; 282(April 2021): 114618. https://doi.org/10.1016/j.jep.2021.114618.
20. Kadam, D. M.; Kaushik, P.; Kumar, R. Evaluation of Guava Products Quality. Int. J. Food Sci. Nutr. Eng. 2012; 2(1): 7–11. https://doi.org/10.5923/j.food.20120201.02.
21. Fereidoon, S.; Cesarettin, A. Handbook of Functional Beverages and Human Health; Taylor & Francis Group, Ed.; CRC Press: Canada, 2016. https://doi.org/10.1201/b19490.
22. Samuel, Daniel Silas Geetha, R. V. Antioxidant Activity of Dry Fruits: A Short Review. Res. J. Pharm. Tech. 2014; 7(11): 1319–1322.
23. Manikandan, R.; Vijaya Anand, A. A Review on Antioxidant Activity of Psidium Guajava. Research J. Pharm. and Tech. Res. J. Pharm. Tech. 2015; 8(3): 339–342. https://doi.org/10.5958/0974-360X.2015.00056.6.
24. Sun, C.; Liu, Y.; Zhan, L.; Rayat, G. R.; Xiao, J.; Jiang, H.; Li, X.; Chen, K. Anti-Diabetic Effects of Natural Antioxidants from Fruits. Trends Food Sci. Technol. 2021; 117(April 2020): 3–14. https://doi.org/10.1016/j.tifs.2020.07.024.
25. Li, P. Y.; Hsu, C. C.; Yin, M. C.; Kuo, Y. H.; Tang, F. Y.; Chao, C. Y.; McPhee, D. J. Protective Effects of Red Guava on Inflammation and Oxidative Stress in Streptozotocin-Induced Diabetic Mice. Molecules 2015; 20(12): 22341–22350. https://doi.org/10.3390/molecules201219831.
26. Simamora, A.; Paramita, L.; Hamid, N. A. B. M.; Santoso, A. W.; Timotius, K. H. In Vitro Antidiabetic and Antioxidant Activities of Aqueous Extract from the Leaf and Fruit of Psidium Guajava L. Indones. Biomed. J. 2018; 10(2): 156–164. https://doi.org/10.18585/inabj.v10i2.402.
27. Jiao, Y.; Hua, D.; Huang, D.; Zhang, Q.; Yan, C. Characterization of a New Heteropolysaccharide from Green Guava and Its Application as an α-Glucosidase Inhibitor for the Treatment of Type II Diabetes. Food Funct. 2018; 9(7): 3997–4007. https://doi.org/10.1039/c8fo00790j.
28. Rittisak, S.; Lonuch, N.; Buakeeree, S.; Yimtoe, S. Development of Jelly Drink from Cultivated Banana Pseudo Stem Juice (Musa Sapientum L.) and Pineapple Juice Supplemented with Pineapple Pulp. Food Res. 2023; 7(2): 52–59. https://doi.org/10.26656/fr.2017.7(2).721.
29. Gani, Y. F.; Indarto, T.; Suseno, P.; Surjoseputro, S. Perbedaan Konsentrasi Karagenan Terhadap Sifat Fisikokimia Dan Organoleptik Jelly Drink Rosela-Sirsak (Differences of Carrageenan Concentration on Physicochemical and Organoleptic Properties of Rosella-Soursop Jelly Drink). J. Food Technol. Nutr. 2014; 13 (2): 87–93.
30. Kraak, V. I.; Englund, T.; Misyak, S.; Serrano, E. L. A Novel Marketing Mix and Choice Architecture Framework to Nudge Restaurant Customers toward Healthy Food Environments to Reduce Obesity in the United States. Obes. Rev. 2017, 18 (8), 852–868. https://doi.org/10.1111/obr.12553.
31. Putri, S.; Marliyati, S. A.; Setiawan, B.; Rimbawan, R. The Physical Characteristics of Jelly Drink Bay Leaf Water Extract with Guava Juice Combination. IOP Conf. Ser. Earth Environ. Sci. 2024; 1377(1). https://doi.org/10.1088/1755-1315/1377/1/012042.
32. Putri, S.; Marliyati, S. A.; Setiawan, B.; Rimbawan, R.; Yunianto, A. E.; Rusyana, A. Sensory Profiling of Jelly Drink Made from a Combination of Bay Leaf Water Extract and Guava Juice Using a Quantitative Descriptive Analysis. Amerta Nutr. 2024; 8(3): 452–460. https://doi.org/10.20473/amnt.v8i3.2024.452-460.
33. Putri, S.; Marliyati, S. A.; Setiawan, B.; Rimbawan, R. Development Of Jelly Drink Bay Leaf Water Extract With Guava Juice Combination. Int. J. Chem. Biochem. Sci. 2023; 24(5): 199–205.
34. Agbor, G. A.; Vinson, J. A.; Donnelly, P. E. International Journal of Food Science , Nutrition and Dietetics ( IJFS ) ISSN 2326-3350. Int. J. Food Sci. Nutr. Diet. 2015; 4(1): 1–5.
35. Chang, C. C.; Yang, M. H.; Wen, H. M.; Chern, J. C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colometric Methods. J. Food Drug Anal. 2002; 10(3): 178–182. https://doi.org/10.38212/2224-6614.2748.
36. Salazar-Aranda, R.; Pérez-López, L. A.; López-Arroyo, J.; Alanís-Garza, B. A.; Waksman De Torres, N. Antimicrobial and Antioxidant Activities of Plants from Northeast of Mexico. Evidence-based Complement. Altern. Med. 2011; 2011. https://doi.org/10.1093/ecam/nep127.
37. Sancheti, S.; Sancheti, S.; Seo, S. Y. Chaenomeles Sinensis: A Potent α-and β-Glucosidase Inhibitor. Am. J. Pharmacol. Toxicol. 2009, 4 (1), 8–11. https://doi.org/10.3844/ajptsp.2009.8.11.
38. Kocabas, B. B.; Attar, A.; Peksel, A.; Yapaoz, M. A. Phytosynthesis of CuONPs via Laurus Nobilis: Determination of Antioxidant Content, Antibacterial Activity, and Dye Decolorization Potential. Biotechnol. Appl. Biochem. 2021; 68(4): 889–895. https://doi.org/10.1002/bab.2010.
39. Alejo-Armijo, A.; Altarejos, J.; Salido, S. Phytochemicals and Biological Activities of Laurel Tree (Laurus Nobilis). Nat. Prod. Commun. 2017; 12(5): 743–757. https://doi.org/10.1177/1934578x1701200519.
40. Deepthi, P. Physiological and Biochemical Changes during Fruit Growth, Maturity and Ripening of Guava: A Review. J. Postharvest Technol. 2017; 5(2): 1–16.
41. Recuenco, M. C.; Lacsamana, M. S.; Hurtada, W. A.; Sabularse, V. C. Total Phenolic and Total Flavonoid Contents of Selected Fruits in the Philippines. Philipp. J. Sci. 2016; 145(3): 275–281.
42. Santos, W. N. L. dos; da Silva Sauthier, M. C.; dos Santos, A. M. P.; de Andrade Santana, D.; Almeida Azevedo, R. S.; da Cruz Caldas, J. Simultaneous Determination of 13 Phenolic Bioactive Compounds in Guava (Psidium Guajava L.) by HPLC-PAD with Evaluation Using PCA and Neural Network Analysis (NNA). Microchem. J. 2017; 133: 583–592. https://doi.org/10.1016/j.microc.2017.04.029.
43. Salawu, M. O.; Iduze, M.; Ayuba, A. K.; Oloyede, H. O. B. Protective Effects of Aqueous Extract of Bay Leaf (Laurus Nobilis) on Endotoxin-Induced Oxidative Stress in Rabbits. J. Herbs, Spices Med. Plants. 2023; 29(1): 52–62. https://doi.org/10.1080/10496475.2022.2087819.
44. Pratama, B. P.; Supriyadi; Swasono, R. T.; Pranoto, Y. Different Leaf Maturities and Withering Durations Affect the Antioxidant Potential and Aroma Compound of Indonesian Bay Leaf [Syzygium Polyanthum (Wight) Walp.]. Int. Food Res. J. 2021; 28(6): 1196–1203. https://doi.org/10.47836/ifrj.28.6.11.
45. Fitriana, A. S.; Royani, S. Identifying Antioxidant Activities of Guava Fruit Using DPPH Method. 2020; 20(Icch 2019): 113–115. https://doi.org/10.2991/ahsr.k.200204.027.
46. Mahadik, S. .; Jagtap, V. .; Oswal, H.; Kumawat, N.; Kothari, R. In Vitro Antioxidant Activity of Ethanolic Extracts of Celosia Argentea Aerial Parts, Fresh Fruits of Fragaria Vesca, Tamarindus Indica, Psidium Guajava, Zizyphus Mauritiana. Res. J. Pharm. Tech. 2011; 4(11): 1782–1784.
47. Soares, J. M. D.; Leal, A. E. B. P.; Silva, J. C.; Almeida, J. R. G. S.; de Oliveira, H. P. Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion. Pharmacogn. Mag. 2017; 13(Suppl (62): 639–646. https://doi.org/10.4103/pm.pm_87_17.
48. Handayani, I. The Effect of Hydrocolloid on Stability of Papaya-Pineapple Jelly Drink during Storage. IOP Conf. Ser. Earth Environ. Sci. 2021; 653(1). https://doi.org/10.1088/1755-1315/653/1/012056.
49. Rios-Corripio, G.; Guerrero-Beltrán, J. Á. Antioxidant and Physicochemical Characteristics of Unfermented and Fermented Pomegranate (Punica Granatum L.) Beverages. J. Food Sci. Technol. 2019; 56(1): 132–139. https://doi.org/10.1007/s13197-018-3466-6.
50. Suryaningsih, S.; Muslim, B.; Djali, M. The Antioxidant Activity of Roselle and Dragon Fruit Peel Functional Drink in Free Radical Inhibition. J. Phys. Conf. Ser. 2021; 1836(1). https://doi.org/10.1088/1742-6596/1836/1/012069.
51. Khongrum, J.; Yingthongchai, P.; Boonyapranai, K.; Wongtanasarasin, W.; Donrung, N.; Sukketsiri, W.; Prachansuwan, A.; Chonpathompikunlert, P. Antidyslipidemic, Antioxidant, and Anti-Inflammatory Effects of Jelly Drink Containing Polyphenol-Rich Roselle Calyces Extract and Passion Fruit Juice with Pulp in Adults with Dyslipidemia: A Randomized, Double-Blind, Placebo-Controlled Trial. Oxid. Med. Cell. Longev. 2022; 2022. https://doi.org/10.1155/2022/4631983.
52. Patel, H.; Roghelia, V. Development and Physicochemical Analysis of Wood Apple Jelly Containing Immobilized Lactobacillus Acidophilus. J. Microbiol. Biotechnol. Food Sci. 2023; 12(6). https://doi.org/10.55251/jmbfs.9349.
53. Lafarga, T.; Viñas, I.; Bobo, G.; Simó, J.; Aguiló-Aguayo, I. Effect of Steaming and Sous Vide Processing on the Total Phenolic Content, Vitamin C and Antioxidant Potential of the Genus Brassica. Innov. Food Sci. Emerg. Technol. 2018; 47(February): 412–420. https://doi.org/10.1016/j.ifset.2018.04.008.
54. Khan, A.; Zaman, G.; Anderson, R. A. Bay Leaves Improve Glucose and Lipid Profile of People with Type 2 Diabetes. J. Clin. Biochem. Nutr. 2009; 44(1): 52–56. https://doi.org/10.3164/jcbn.08-188.
55. Amin, A.; Akhundzada, K.; K R, V.; Ugalat, J.; Jayappa, S. Development of Blended RTS from Pomegranate and Grapes. Int. J. Chem. Stud. 2018; 6(4): 3337–3341.
56. Udayakumar, K. P.; Chaturvedi, K.; Swamy, G. S. K.; Sane, A.; Singh, P.; Suresh, G. J. Development and Evaluation of Ready to Serve (RTS) Beverage from Bael (Aegle Marmelose Correa.). J. Hortic. Sci. 2022; 17(1): 166–173.
57. Frediansyah, A.; Nurhayati, R.; Romadhoni, F. Enhancement of Antioxidant Activity, α-Glucosidase and α-Amylase Inhibitory Activities by Spontaneous and Bacterial Monoculture Fermentation of Indonesian Black Grape Juices. AIP Conf. Proc. 2017; 1803. https://doi.org/10.1063/1.4973149.
58. Jariyah; Rosida; Defri, I.; Wardani, P. E. K. The Physicochemical Properties of the Jelly Drink Produced by Mixing Pedada (Sonneratia Caseolaris) and Young Coconut Juices with Carrageenan. MATEC Web Conf. 2022; 372: 02006. https://doi.org/10.1051/matecconf/202237202006.
59. Pisoschi, A. M.; Pop, A.; Iordache, F.; Stanca, L.; Geicu, O. I.; Bilteanu, L.; Serban, A. I. Antioxidant, Anti-Inflammatory and Immunomodulatory Roles of Vitamins in COVID-19 Therapy. Eur. J. Med. Chem. 2022, 232, 114175. https://doi.org/10.1016/j.ejmech.2022.114175.
60. Chen, L.; Pu, Y.; Xu, Y.; He, X.; Cao, J.; Ma, Y.; Jiang, W. Anti-Diabetic and Anti-Obesity: Efficacy Evaluation and Exploitation of Polyphenols in Fruits and Vegetables. Food Res. Int. 2022; 157 (January). https://doi.org/10.1016/j.foodres.2022.111202.
61. Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M. C. B.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid. Med. Cell. Longev. 2016; 2016. https://doi.org/10.1155/2016/7432797.
62. Lv, Q. Z.; Long, J. T.; Gong, Z. F.; Nong, K. Y.; Liang, X. M.; Qin, T.; Huang, W.; Yang, L. Current State of Knowledge on the Antioxidant Effects and Mechanisms of Action of Polyphenolic Compounds. Nat. Prod. Commun. 2021; 16(7). https://doi.org/10.1177/1934578X211027745.
63. Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020; 44(9): 1–22. https://doi.org/10.1111/jfbc.13394.
64. Murugan, S.; Shanmugam, A.; Manoharan, Lakshmi Sundaramoorthy, S.; Gunasekaran, S.; Arunachalam, S.; Sathiavelu, M. Antioxidant Activity of Aqueous and Methanol Extract of Barnyard Millet. Res. J. Pharm. Tech 2016; 9(3): 262–266. https://doi.org/10.5958/0974-360X.2016.00048.2.
65. Bahar, A.; Monica Sianita Basukiwardojo, M.; Kusumawati, N.; Muslim, S.; Sella Auliya, A. Effect of Milk on Physico-Chemical and Functional of Herbal Jelly Drink. Atlantis-Press.Com 2021; 209(Ijcse): 34–39.
66. Dobroslavić, E.; Garofulić, I. E.; Ilich, J. Z. Potential of Laurel (Laurus Nobilis L.) Leaf Polyphenols for Modulation of Body Composition. Appl. Sci. 2023, 13 (4). https://doi.org/10.3390/app13042275.
67. Mancini, F. R.; Affret, A.; Dow, C.; Balkau, B.; Bonnet, F.; Boutron-Ruault, M. C.; Fagherazzi, G. Dietary Antioxidant Capacity and Risk of Type 2 Diabetes in the Large Prospective E3N-EPIC Cohort. Diabetologia 2018; 61(2): 308–316. https://doi.org/10.1007/s00125-017-4489-7.
68. Ghobad-Nejhad, M.; Antonín, V.; Moghaddam, M.; Langer, E. Resources of Iranian Agarics (Basidiomycota) with an Outlook on Their Antioxidant Potential. Front. Microbiol. 2022; 13(October): 1–29. https://doi.org/10.3389/fmicb.2022.1015440.
69. Obaroakpo, J. U.; Liu, L.; Zhang, S.; Lu, J.; Pang, X.; Lv, J. α-Glucosidase and ACE Dual Inhibitory Protein Hydrolysates and Peptide Fractions of Sprouted Quinoa Yoghurt Beverages Inoculated with Lactobacillus Casei. Food Chem. 2019; 299(March). https://doi.org/10.1016/j.foodchem.2019.124985.
70. Vidyasabbani; RameshAlluri; Satla, S. Comparative In Vitro Antidiabetic and Antioxidant Activity of Pulicaria Wightinia, Curcuma Inodora ,Derris Scandens Leaf Extracts. Res. J. Pharm. Tech. 2017; 10(6): 1615–1620. https://doi.org/10.5958/0974-360X.2017.00284.0.
71. Liu, S.; Yu, Z.; Zhu, H.; Zhang, W.; Chen, Y. In Vitro α-Glucosidase Inhibitory Activity of Isolated Fractions from Water Extract of Qingzhuan Dark Tea. BMC Complement. Altern. Med. 2016; 16(1): 1–8. https://doi.org/10.1186/s12906-016-1361-0.
72. Simamora, A.; Santoso, A. W.; Timotius, K. H. Α-Glucosidase Inhibitory Effect of Fermented Fruit Juice of Morinda Citrifolia L and Combination Effect With Acarbose. Curr. Res. Nutr. Food Sci. 2019; 7(1): 218–226. https://doi.org/10.12944/CRNFSJ.7.1.21.
73. Silva, J. G. S.; Rebellato, A. P.; Caramês, E. T. dos S.; Greiner, R.; Pallone, J. A. L. In Vitro Digestion Effect on Mineral Bioaccessibility and Antioxidant Bioactive Compounds of Plant-Based Beverages. Food Res. Int. 2020; 130(December 2019): 108993. https://doi.org/10.1016/j.foodres.2020.108993.
74. Singh, V.; Singh, J.; Kushwaha, R.; Singh, M.; Kumar, S.; Rai, A. K. Assessment of Antioxidant Activity, Minerals and Chemical Constituents of Edible Mahua (Madhuca Longifolia) Flower and Fruit of Using Principal Component Analysis. Nutr. Food Sci. 2021; 51(2): 387–411. https://doi.org/10.1108/NFS-04-2020-0129.
75. Zulfiqar, S.; Marshall, L. J.; Boesch, C. Hibiscus Sabdariffa Inhibits α-Glucosidase Activity in Vitro and Lowers Postprandial Blood Glucose Response in Humans. Hum. Nutr. Metab. 2022; 30(October 2021): 200164. https://doi.org/10.1016/j.hnm.2022.200164.
76. Hazael Conania Nikiema, W.-K.; Karanga, Y.; Ilboudo, O.; Hamidou Ganamé, T.; Hamidou Ganamé, T.; Tapsoba, I. Inhibition of α-Glucosidase Activity by Polyphenol Compounds from C. Occidentalis: Phytochemical Screening and Antidiabetic Studies. Asian J. Res. Chem. 2023; 16(August): 257–264. https://doi.org/10.52711/0974-4150.2023.00043.