Author(s): Muh Ade Artasasta, Diandra Mytha Faradilla, Rahmalia A’yunin, Teresa Godeliva Giantana, Dwi Listyorini, Wira Eka Putra, Hendra Susanto, Ping-Chung Kuo, Dian Handayani, Hao-Ze Li, Pei-Hung Chang, Loeki Enggar Fitri

Email(s): muh.ade.artasasta.fmipa@um.ac.id

DOI: 10.52711/0974-360X.2025.00398   

Address: Muh Ade Artasasta1*, Diandra Mytha Faradilla1, Rahmalia A’yunin1, Teresa Godeliva Giantana1, Dwi Listyorini1,2, Wira Eka Putra1, Hendra Susanto2, Ping-Chung Kuo3, Dian Handayani4, Hao-Ze Li3, Pei-Hung Chang3, Loeki Enggar Fitri5
1Biotechnology Program, Department of Applied Science, Faculty of Mathematics and Natural Sciences, State University of Malang, Indonesia.
2Department of Biology, Faculty of Mathematics and Natural Sciences, State University of Malang, Indonesia.
3School of Pharmacy, Collage of Medicine, National Cheng Kung University, Tainan, Taiwan.
4Laboratory of Sumatran Biota/Faculty of Pharmacy, Universitas Andalas, Padang, Indonesia.
5Department of Clinical Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 6,     Year - 2025


ABSTRACT:
This study aims to determine the antimalarial activity of n-hexane, ethyl acetate and methanol extracts from the rind of Aloe chinensis that is evaluated through in vivo and in silico studies. The phytochemical content of rind of A. chinenesis simplicia was extracted using n-hexane (HKLB), ethyl acetate (EKLB) and methanol (MKLB). All extracts were tested for its antimalarial activity against male mice (Mus musculus L. Swiss Webster)-infected Plasmodium berghei. All mice were grouped into four groups and treated for four days. The potentially active extract was further investigated for its secondary metabolite content using Global Natural Products Social (GNPS) molecular networking analysis through its LC-MS/MS profiles. An in silico study evaluated prospective compounds ability to interact with proteins that cause malaria, such as Plms I and Plms IV. The in vivo study revealed that the MKLB extract has the lowest ED50 value of 19.71 mg/kg BW for inhibiting P. berghei. A total of 11 compounds were successfully identified from the MKLB extract. Following an analysis of drug-likeness properties using Lipinski's rule parameters, compounds aloesin and 4-[5-[[4-[5-[acetyl(hydroxy)amino] pentylamino]-4-oxobutanoyl]-hydroxyamino]pentylamino]-4-oxobutanoic acid were recognized as potential candidates for drug development. Molecular docking analysis of these two compounds revealed binding affinity values of -6.7 kcal/mol (Plms I), -5.9kcal/mol (Plms IV), and -5.3kcal/mol (Plms I), -5.3kcal/mol (Plms IV), respectively. MKLB extract has the potential to act as a natural antimalarial agent, as shown by in vivo and in silico studies. However, more research is required to isolate different compounds from the MKLB extract using chromatographic methods and test their antimalarial activity.


Cite this article:
Muh Ade Artasasta, Diandra Mytha Faradilla, Rahmalia A’yunin, Teresa Godeliva Giantana, Dwi Listyorini, Wira Eka Putra, Hendra Susanto, Ping-Chung Kuo, Dian Handayani, Hao-Ze Li, Pei-Hung Chang, Loeki Enggar Fitri. Muh Ade Artasasta, Diandra Mytha Faradilla, Rahmalia A’yunin, Teresa Godeliva Giantana, Dwi Listyorini, Wira Eka Putra, Hendra Susanto, Ping-Chung Kuo, Dian Handayani, Hao-Ze Li, Pei-Hung Chang, Loeki Enggar Fitri. Research Journal of Pharmacy and Technology. 2025;18(6):2780-7. doi: 10.52711/0974-360X.2025.00398

Cite(Electronic):
Muh Ade Artasasta, Diandra Mytha Faradilla, Rahmalia A’yunin, Teresa Godeliva Giantana, Dwi Listyorini, Wira Eka Putra, Hendra Susanto, Ping-Chung Kuo, Dian Handayani, Hao-Ze Li, Pei-Hung Chang, Loeki Enggar Fitri. Muh Ade Artasasta, Diandra Mytha Faradilla, Rahmalia A’yunin, Teresa Godeliva Giantana, Dwi Listyorini, Wira Eka Putra, Hendra Susanto, Ping-Chung Kuo, Dian Handayani, Hao-Ze Li, Pei-Hung Chang, Loeki Enggar Fitri. Research Journal of Pharmacy and Technology. 2025;18(6):2780-7. doi: 10.52711/0974-360X.2025.00398   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-6-51


REFERENCES:
1.    Thillainayagam M, Ramaiah S. Mosquito, Malaria and Medicines – A Review. Res J Pharm Technol. 2016; 9(8). doi:10.5958/0974-360X.2016.00241.9
2.    Francis P, SR S. Antimalarial Potential of Isolated Flavonoids-A Review. Res J Pharm Technol. 2017; 10(11). doi:10.5958/0974-360X.2017.00736.3
3.    Kamaraj C, Ragavendran C, Prem P, et al. Exploring the Therapeutic Potential of Traditional Antimalarial and Antidengue Plants: A Mechanistic Perspective. Mukhopadhyay S, ed. Can J Infect Dis Med Microbiol. 2023; 2023: 1860084. doi:10.1155/2023/1860084
4.    Burki T. A new Director for the Global Malaria Programme. Lancet Infect Dis. 2023; 23(5): 536-537. doi:10.1016/S1473-3099(23)00223-2
5.    Lei Z-N, Wu Z-X, Dong S, et al. Chloroquine and hydroxychloroquine in the treatment of malaria and repurposing in  treating COVID-19. Pharmacol Ther. 2020; 216: 107672. doi:10.1016/j.pharmthera.2020.107672
6.    Dubey S, Bhardwaj S, Parbhakaran P, Singh E. In silico Prediction of Pyrazoline Derivatives as Antimalarial agents. Asian J Pharm Res. 2022; 12(2). doi:10.52711/2231-5691.2022.00018
7.    Mutiah R, Badiah R, Hayati EK, Widyawaruyanti A. Activity of Antimalarial Compounds from Ethyl Acetate Fraction of Sunflower Leaves (Helianthus annuus L.) against Plasmodium falciparum Parasites 3D7 Strain. Asian J Pharm Technol. 2017; 7(2): 86-90. doi:10.5958/2231-5713.2017.00015.0
8.    Agarwal AK, Yadac A, P C, Kuity P, Mishra J. Development of Antimalarial Pharmacotherapy and its importance in Malaria Treatment/Public Health Program. Asian J Pharm Anal. 2022; 12(4). doi:10.52711/2231-5675.2022.00038
9.    Wardani AK, Wahid AR, Rosa NS. In Vitro Antimalarial Activity of Ashitaba Root Extracts (Angelica keiskei K.). Res J Pharm Technol. 2020; 13(8): 3771-3776. doi:10.5958/0974-360X.2020.00667.8
10.    Shibeshi MA, Kifle ZD, Atnafie SA. Antimalarial Drug Resistance and Novel Targets for Antimalarial Drug Discovery. Infect Drug Resist. 2020; 13: 4047-4060. doi:10.2147/IDR.S279433
11.    Ramakrishnan G, Chandra N, Srinivasan N. Exploring anti-malarial potential of FDA approved drugs: an in silico approach. Malar J. 2017; 16(1): 290. doi:10.1186/s12936-017-1937-2
12.    Tewabe Y, Assefa S. Antimalarial Potential of the Leaf Exudate of Aloe macrocarpa Todaro and its Major Constituents against Plasmodium berghei. Clin Exp Pharmacol. 2018; 08(01). doi:10.4172/2161-1459.1000245
13.    Gemechu W, Bisrat D, Asres K. Antimalarial Anthrone and Chromone from the Leaf Latex of Aloe debrana Chrstian. Ethiop Pharm J. 2014; 30(1): 1. doi:10.4314/epj.v30i1.1
14.    Hintsa G, Sibhat GG, Karim A. Evaluation of Antimalarial Activity of the Leaf Latex and TLC Isolates from Aloe  megalacantha Baker in Plasmodium berghei Infected Mice. Evid Based Complement Alternat Med. 2019; 2019: 6459498. doi:10.1155/2019/6459498
15.    Gebremariam GK, Desta HK, Teklehaimanot TT, Girmay TG. In Vivo Antimalarial Activity of Leaf Latex of Aloe melanacantha against  Plasmodium berghei Infected Mice. J Trop Med. 2021; 2021: 6690725. doi:10.1155/2021/6690725
16.    Nassar SA, Oyewole M. Evaluation of antiplasmodial potential of Aloe barbadensis and Allium sativum on plasmodium berghei-infected mice. J Med Plants Res. 2018; 12(22): 320-324. doi:10.5897/jmpr2015.5907
17.    Liu C, Leung MYK, Koon JCM, et al. Macrophage activation by polysaccharide biological response modifier isolated from Aloe vera L. var. chinensis (Haw.) Berg. Int Immunopharmacol. 2006; 6(11): 1634-1641. doi:10.1016/j.intimp.2006.04.013
18.    Shi C, Ignjatović J, Liu T, et al. In vitro - in vivo - in silico approach in the development of inhaled drug products: Nanocrystal-based formulations with budesonide as a model drug. Asian J Pharm Sci. 2021; 16(3): 350-362. doi:10.1016/j.ajps.2020.12.001
19.    Moon RP, Tyas L, Certa U, et al. Expression and characterisation of plasmepsin I from Plasmodium falciparum. Eur J Biochem. 1997; 244(2): 552-560. doi:10.1111/j.1432-1033.1997.00552.x
20.    Spaccapelo R, Janse CJ, Caterbi S, et al. Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria. Am J Pathol. 2010; 176(1): 205-217. doi:10.2353/ajpath.2010.090504
21.    Kemal T, Feyisa K, Bisrat D, Asres K. In Vivo Antimalarial Activity of the Leaf Extract of Osyris quadripartita Salzm. ex Decne and Its Major Compound (–) Catechin. Ullah R, ed. J Trop Med. 2022; 2022: 3391216. doi:10.1155/2022/3391216
22.    Amadi OK, Otuokere IE, Bartholomew CF. Synthesis, Characterization, in vivo Antimalarial Studies and Geometry Optimization of Lumefantrine/Artemether Mixed Ligand Complexes. Res J Pharm Dos Forms Technol. 2015; 7(1): 59-68. doi:10.5958/0975-4377.2015.00009.9
23.    Maslachah L, Purwitasari N. Antimalarial Activity of Nano Phytomedicine Fraction of Syzygium cumini Fruit in Rodent Malaria. Res J Pharm Technol. 2023; 16(9). doi:10.52711/0974-360X.2023.00702
24.    Wang M, Carver JJ, Phelan V V, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34(8):828-837. doi:10.1038/nbt.3597
25.    Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11): 2498-2504.
26.    Riyanti, Balansa W, Liu Y, et al. Selection of sponge-associated bacteria with high potential for the production of antibacterial compounds. Sci Rep. 2020; 10(1): 1-15. doi:10.1038/s41598-020-76256-2
27.    Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(1): 42717. doi:10.1038/srep42717
28.    Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235-242. doi:10.1093/nar/28.1.235
29.    Dhananjayan K, Sumathy A, Palanisamy S. Molecular Docking Studies and in-vitro Acetylcholinesterase Inhibition by Terpenoids and Flavonoids. Asian J Res Chem. 2013; 6(11): 1011-1017.
30.    M N. Online SMILES Translator [Internet]. Published 2020. https://cactus.nci.nih.gov/translate
31.    Eberhardt J, Santos-Martins D, Tillack AF, Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J Chem Inf Model. 2021; 61(8): 3891-3898. doi:10.1021/acs.jcim.1c00203
32.    Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring  function, efficient optimization, and multithreading. J Comput Chem. 2010; 31(2): 455-461. doi:10.1002/jcc.21334
33.    BIOVIA. Discovery Studio Visualizer, V21.1.0.20298. Dassault Systèmes; 2021. https://discover.3ds.com/discovery-studio-visualizer-download
34.    Otuokere IE, Amaku FJ, Alisa CO. In Silico Geometry Optimization, Excited – State Properties of (2E)-N-Hydroxy-3-[3-(Phenylsulfamoyl) Phenyl] prop-2-Enamide (Belinostat) and its Molecular Docking Studies with Ebola Virus Glycoprotein. Asian J Pharm Res. 2015; 5(3). doi:10.5958/2231-5691.2015.00020.9
35.    Dirar AI, Alsaadi DHM, Wada M, Mohamed MA, Watanabe T, Devkota HP. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. South African J Bot. 2019; 120: 261-267. doi:10.1016/j.sajb.2018.07.003
36.    Thouri A, Chahdoura H, El Arem A, Omri Hichri A, Ben Hassin R, Achour L. Effect of solvents extraction on phytochemical components and biological activities of Tunisian date seeds (var. Korkobbi and Arechti). BMC Complement Altern Med. 2017; 17(1): 1-10. doi:10.1186/s12906-017-1751-y
37.    Onyebuchi C, Kavaz D. Effect of extraction temperature and solvent type on the bioactive potential of Ocimum gratissimum L. extracts. Sci Rep. 2020; 10(1): 1-11. doi:10.1038/s41598-020-78847-5
38.    Misganaw D, Engidawork E, Nedi T. Evaluation of the anti-malarial activity of crude extract and solvent fractions of the leaves of Olea europaea (Oleaceae) in mice. BMC Complement Altern Med. 2019; 19(1): 1-12. doi:10.1186/s12906-019-2567-8
39.    Habte G, Nedi T, Assefa S. Antimalarial Activity of Aqueous and 80% Methanol Crude Seed Extracts and Solvent Fractions of Schinus molle Linnaeus (Anacardiaceae) in Plasmodium berghei -Infected Mice. J Trop Med. 2020; 2020. doi:10.1155/2020/9473250
40.    Salehi B, Albayrak S, Antolak H, et al. Aloe Genus Plants: From Farm to Food Applications and Phytopharmacotherapy. Int J Mol Sci. 2018; 19(9). doi:10.3390/ijms19092843
41.    Zhang LQ, Lv RW, Qu XD, Chen XJ, Lu HS, Wang Y. Aloesin Suppresses Cell Growth and Metastasis in Ovarian Cancer SKOV3 Cells through the Inhibition of the MAPK Signaling Pathway. Anal Cell Pathol. 2017; 2017. doi:10.1155/2017/8158254
42.    Añibarro-Ortega M, Pinela J, Ćirić A, et al. Extraction of aloesin from aloe vera rind using alternative green solvents: Process optimization and biological activity assessment. Biology (Basel). 2021; 10(10). doi:10.3390/biology10100951
43.    Abdulai IL, Kwofie SK, Gbewonyo WS, Boison D, Puplampu JB, Adinortey MB. Multitargeted Effects of Vitexin and Isovitexin on Diabetes Mellitus and Its Complications. Sci World J. 2021; 2021. doi:10.1155/2021/6641128
44.    Xiao J, Chen S, Chen Y, Su J. The potential health benefits of aloin from genus Aloe. Phytother Res. 2022; 36(2): 873-890. doi:10.1002/ptr.7371
45.    Viljoen AM, Van Wyk BE, Van Heerden FR. Distribution and chemotaxonomic significance of flavonoids in Aloe (Asphodelaceae). Plant Syst Evol. 1998; 211(1-2): 31-42. doi:10.1007/BF00984910
46.    Majumder R, Das CK, Mandal M. Lead bioactive compounds of Aloe vera as potential anticancer agent. Pharmacol Res. 2019; 148(May):104416. doi:10.1016/j.phrs.2019.104416
47.    Cock IE. The Genus Aloe: Phytochemistry and Therapeutic Uses Including Treatments for Gastrointestinal Conditions and Chronic Inflammation. Vol 70.; 2015. doi:10.1007/978-3-0348-0927-6_6
48.    Kumar S, Yadav M, Yadav A, Rohilla P, Yadav JP. Antiplasmodial potential and quantification of aloin and aloe-emodin in Aloe vera collected from different climatic regions of India. BMC Complement Altern Med. 2017; 17(1): 1-10. doi:10.1186/s12906-017-1883-0
49.    Geremedhin G, Bisrat D, Asres K. Isolation, characterization and in vivo antimalarial evaluation of anthrones from the leaf latex of aloe percrassa todaro. J Nat Remedies. 2014; 14(2): 119-125. doi:10.18311/jnr/2014/72
50.    van Zyl RL, Viljoen AM, Jäger AK. In vitro activity of Aloe extracts against Plasmodium falciparum. South African J Bot. 2002; 68(1): 106-110. doi:10.1016/s0254-6299(16)30465-3
51.    Zhang MQ, Wilkinson B. Drug discovery beyond the “rule-of-five.” Curr Opin Biotechnol. 2007;18(6):478-488. doi:10.1016/j.copbio.2007.10.005
52.    Lipinski CA. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov Today Technol. 2004; 1(4): 337-341. doi:10.1016/j.ddtec.2004.11.007
53.    Koutsoukas A, Simms B, Kirchmair J, et al. From in silico target prediction to multi-target drug design: Current databases, methods and applications. J Proteomics. 2011; 74(12): 2554-2574. doi:10.1016/j.jprot.2011.05.011
54.    Lynch B, Simon R, Roberts A. In vitro and in vivo assessment of the genotoxic activity of aloesin. Regul Toxicol Pharmacol. 2011; 61(2): 215-221. doi:10.1016/j.yrtph.2011.07.011
55.    ZHANG Guohui, LI Rongyu WX. Inhibitory activity of aloesin and aloe gel against Curvularia lunata ZHANG. 2021; 23(2016): 316-322.
56.    Spaccapelo R, Janse CJ, Caterbi S, et al. Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria. Am J Pathol. 2010; 176(1): 205-217. doi:10.2353/ajpath.2010.090504
57.    Pantsar T, Poso A. Binding affinity via docking: Fact and fiction. Molecules. 2018; 23(8): 1DUMMY. doi:10.3390/molecules23081899
58.    Liu K, Zha XQ, Li QM, Pan LH, Luo JP. Hydrophobic interaction and hydrogen bonding driving the self-assembling of quinoa protein and flavonoids. Food Hydrocoll. 2021;118(April):106807. doi:10.1016/j.foodhyd.2021.106807
59.    Chaniad P, Mungthin M, Payaka A, Viriyavejakul P, Punsawad C. Antimalarial properties and molecular docking analysis of compounds from Dioscorea bulbifera L. as new antimalarial agent candidates. BMC Complement Med Ther. 2021; 21(1): 1-10. doi:10.1186/s12906-021-03317-y
60.    Lindman B, Medronho B, Alves L, Norgren M, Nordenskiöld L. Hydrophobic interactions control the self-assembly of DNA and cellulose. Q Rev Biophys. 2021; 54(2016). doi:10.1017/S0033583521000019
61.    Xue Q, Liu X, Russell P, et al. Evaluation of the binding performance of flavonoids to estrogen receptor alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicol Environ Saf. 2022; 233:113323. doi:10.1016/j.ecoenv.2022.113323

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available