Author(s): Sagar Vasantrao Joshi, Sarika B. Patil, Sarika N. Patil, Sushma Bhosle, Neeta Pramod Karhadkar, Yogesh Kumar Rathore

Email(s): sagar.joshi@nmiet.edu.in , sarikab.patil@nmiet.edu.in , sarikapatil1211@gmail.com , sushma.bhosle28@gmail.com , karhadkarneeta@gmail.com , yogeshrathore23@gmail.com

DOI: 10.52711/0974-360X.2025.00393   

Address: Sagar Vasantrao Joshi1, Sarika B. Patil2, Sarika N. Patil3, Sushma Bhosle4, Neeta Pramod Karhadkar5, Yogesh Kumar Rathore6*
1,2,3,4,5Department of Electronics and Telecommunication Engineering, Nutan Maharashtra Institute of Engineering and Technology, Talegaon, Dabhade, Pune, Maharashtra, India.
6Shri Shankaracharya Institute of Professional Management and Technology, Raipur, Chhattisgarh, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 6,     Year - 2025


ABSTRACT:
The efficient management of drug inventories is a critical challenge in hospital pharmacy operations. Predicting drug shortages and optimizing the supply chain are essential to ensure uninterrupted patient care. This paper explores the application of machine learning (ML) models to enhance forecasting accuracy for drug demand, identify potential shortages, and streamline supply chain operations. Traditional inventory management techniques often struggle to handle pharmaceutical supply and demand's dynamic and unpredictable nature. ML models, including time-series forecasting algorithms and supervised learning approaches, offer promising solutions by leveraging historical data, prescription trends, and external factors such as seasonality and supplier performance. The study examines various ML techniques to predict drug shortages, such as Long Short-Term Memory (LSTM), Random Forest, and Gradient Boosting Machines (GBM). We also explore optimization algorithms to enhance inventory management and distribution strategies. A comprehensive framework is proposed, integrating predictive models with hospital pharmacy systems to enable real-time monitoring and alerts for low-stock scenarios. Additionally, the research addresses challenges like data privacy, model interpretability, and the integration of ML solutions into existing hospital infrastructure. The results demonstrate the potential of ML-based solutions to improve the efficiency of hospital pharmacy operations by reducing stockouts, minimizing wastage, and optimizing procurement strategies. This study underscores the importance of predictive analytics in healthcare supply chains, contributing to better patient outcomes through timely availability of medications. The proposed approach not only enhances operational efficiency but also provides a scalable model applicable to diverse healthcare settings.


Cite this article:
Sagar Vasantrao Joshi, Sarika B. Patil, Sarika N. Patil, Sushma Bhosle, Neeta Pramod Karhadkar, Yogesh Kumar Rathore. Machine Learning Applications in Hospital Pharmacy for Predicting Drug Shortages and Supply Chain Optimization. Research Journal of Pharmacy and Technology. 2025;18(6):2939-5. doi: 10.52711/0974-360X.2025.00393

Cite(Electronic):
Sagar Vasantrao Joshi, Sarika B. Patil, Sarika N. Patil, Sushma Bhosle, Neeta Pramod Karhadkar, Yogesh Kumar Rathore. Machine Learning Applications in Hospital Pharmacy for Predicting Drug Shortages and Supply Chain Optimization. Research Journal of Pharmacy and Technology. 2025;18(6):2939-5. doi: 10.52711/0974-360X.2025.00393   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-6-46


REFERENCES: 
1.    A. Kaushik, et al. Managing Pharmaceutical Supply Chains during Global Health Crises. Int. J. Healthc. Manage. 2022; 13: 78-86. 
2.    R. S. Mitchell and P. A. Smith. Supply Chain Disruptions in Healthcare: Lessons from COVID-19.  J. Hosp. Admin. 2021; 10(3): 33-42.
3.    K. T. Lee, et al. Limitations of Traditional Inventory Management in Hospitals. Healthcare Informatics J. 2020; 16: 201-209.
4.    S. R. Kumar. Impact of Drug Shortages on Patient Safety. J. Pharm. Pract. 2021; 29(5); 145-150.
5.    M. Ali and F. Ghani. Reducing Waste in Hospital Pharmacy Operations. Healthcare Logistics Review. 2022; 14: 44-50.
6.    A. P. Gupta and N. Sharma. Applications of Machine Learning in Healthcare Supply Chains. IEEE Trans. Eng. Manage. 2023; 69(2): 234-241.
7.    B. Li and L. Zhang. Resilience in Healthcare Supply Chains during COVID-19. Global Health J. 2021; 8(4): 125-132.
8.    T. Zhao, et al. Forecasting Drug Demand Using LSTM Networks. IEEE Access. 2023; 11: 897-908.
9.    C. Patel and D. Wilson. Predicting Drug Shortages with Machine Learning. J. Med. Informatics. 2022; 37(2): 88-99.
10.    R. Tang. Seasonality and Its Impact on Pharmaceutical Supply Chains. Healthcare Supply Chain Manage. 2020; 19: 67-73.
11.    P. S. Nair. Incorporating External Factors into ML-Based Forecasting. IEEE Trans. Syst. Sci. 2022; 58: 239-248.
12.    J. Kim. Inventory Optimization in Hospital Pharmacies. Operations Res. Healthcare. 2022; 17: 130-140.
13.    Y. Wang. Reinforcement Learning for Supply Chain Management. IEEE Trans. Autom. Sci. 2023; 16(2): 115-123.
14.    V. Chen. Vendor Performance in Healthcare Supply Chains. J. Healthcare Admin. 2021; 25: 192-200.
15.    N. A. Hassan, et al. Challenges of Implementing ML in Hospital Pharmacies. IEEE Trans. Health Informatics. 2023; 14: 310-320.
16.    H. R. Devarajan, S. Balasubramanian, S. Kumar Swarnkar, P. Kumar and V. R. Jallepalli. Deep Learning for Automated Detection of Lung Cancer from Medical Imaging Data. 2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI), Raipur, India, 2023: 1-5, doi: 10.1109/ICAIIHI57871.2023.10488962.
17.    A. D. Dhaygude, R. A. Varma, P. Yerpude, S. K. Swarnkar, R. Kumar Jindal and F. Rabbi. Deep Learning Approaches for Feature Extraction in Big Data Analytics. 2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Gautam Buddha Nagar, India.  2023: 964-969, doi: 10.1109/UPCON59197.2023.10434607.
18.    A. Ahmed et al. Forecasting Drug Demand Using AI Models. IEEE Access. 2023; 11: 30218-30229.
19.    C. Thompson and Y. Lee Short-Term Drug Demand Prediction Using Random Forest. J. Health Inform. 2022; 16(3): 45-54.
20.    S. K. Swarnkar, L. Dewangan, O. Dewangan, T. M. Prajapati and F. Rabbi. AI-enabled Crop Health Monitoring and Nutrient Management in Smart Agriculture. 2023 6th International Conference on Contemporary Computing and Informatics (IC3I), Gautam Buddha Nagar, India, 2023: 2679-2683, doi: 10.1109/IC3I59117.2023.10398035.
21.    M. Johnson. Limitations of Traditional Forecasting Methods in Hospital Pharmacies. J. Pharm. Pract., vol. 35, pp. 130-138, 2021.
22.    L. Li et al. Optimizing Hospital Pharmacy Inventories Using Machine Learning. IEEE Trans. Health Informatics. 2023; 18: 112-123, 2023.
23.    X. Chen et al. Reinforcement Learning for Supply Chain Optimization in Healthcare. IEEE Trans. Autom. Sci. 2022; 12(2); 91-100.
24.    T. Smith and P. Taylor. Robotics in Pharmacy: Automated Dispensing Systems. J. Med. Technol. 2021; 14: 67-74.
25.    F. Wilson. The Impact of AI-Powered Automation on Hospital Pharmacies. J. Healthcare Admin. 2022; 25: 233-241.
26.    H. Zhao et al. NLP for Electronic Prescription Analysis. IEEE Trans. Med. Informatics. 2023; 17:198-209.
27.    R. Green. AI-Driven Alerts for Drug Interactions. J. Health Technol. 2022; 10: 102-111.
28.    A. Singh and R. Gupta. Data Privacy Challenges in AI Applications. IEEE Access. 2022; 10: 9812-9821.
29.    B. Wong and C. Wang. Interpretability Issues in AI Models for Healthcare. J. Health Informatics.  2021; 8(4): 88-97.
30.    N. Taylor. Adoption of AI in Hospital Pharmacy: Current Trends. Healthcare Innov. 2023; 11: 123-134.
31.    X. Wang et al. Optimizing Supplier Performance with AI Tools. J. Pharm. Manage. 2022; 20: 210-221.
32.    S. Patel and Y. Kumar. Reinforcement Learning Applications in Pharmacy Operations. IEEE Trans. Autom. Healthcare. 2023; 19: 109-120.
33.    A. Kumar and M. Patel. AI-Enabled Adherence Monitoring Systems. J. Med. Innov. 2022; 9; 200-210.
34.    C. Johnson. Ethics in AI-Driven Hospital Pharmacies. J. Ethics Med. 2021; 7; 55-65.
35.    R. Liu and L. Zhang. The Role of Pharmacists in AI-Driven Decision Making. J. Med. Pract. 2022; 15: 88-97.
36.    G. Singh Chhabra, A. Guru, B. J. Rajput, L. Dewangan and S. K. Swarnkar. Multimodal Neuroimaging for Early Alzheimer's detection: A Deep Learning Approach. 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 2023, pp. 1-5, doi: 10.1109/ICCCNT56998.2023.10307780.
37.    M. Patel and R. Gupta. Advancing Hospital Pharmacy Operations with AI-Driven Solutions. IEEE Trans. Eng. Manage. 2023; 69(3): 320-333.
38.    H. Zhao and K. Zhang. Blockchain for Privacy in AI Systems. IEEE Trans. Health Informatics. 2023; 12: 110-121.
39.    M. Lee. Continuous Improvement of AI Models in Healthcare. J. Health Sci. 2022; 22: 88-99.


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available