Author(s): Bambang Irawan, Mulkan Azhary, Nirwana Lazuardi Sary

Email(s): mulkan.azhary@usk.ac.id

DOI: 10.52711/0974-360X.2025.00388   

Address: Bambang Irawan1, Mulkan Azhary2*, Nirwana Lazuardi Sary3
1Magister of Biomedical Science, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.
2Department of Anatomy and Histology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.
3Department of Physiology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.
*Corresponding Author

Published In:   Volume - 18,      Issue - 6,     Year - 2025


ABSTRACT:
COPD (Chronic Obstructive Pulmonary Disease) is a chronic respiratory condition that reduces the quality of life due to systemic effects and comorbidities, driven by chemotactic factors like IL-8 and LTB-4, which cause airway inflammation through neutrophil migration, mucus hypersecretion, and goblet cell activation. Hibiscus rosa-sinensis (HRs) flowers are known for their antioxidant and anti-inflammatory properties. This study utilized molecular docking to confirm the anti-inflammatory efficacy of phytochemical components from Hibiscus rosa-sinensis extract. The methanol extract's gas chromatography-mass spectrometry (GC-MS) analysis identified 13 compounds, including methyl linoleate, gamma sitosterol, and stigmasterol. Phytochemical screening and DPPH assays assessed antioxidant activity, while molecular docking, performed with AutoDock Vina, showed significant interactions between the extract's bioactive compounds and target proteins IL-8 and LTB-4. Stigmasterol, gamma sitosterol, and methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate exhibited strong binding affinities to IL-8, whereas stigmasterol, gamma sitosterol, and linolenic acid strongly interacted with LTB-4. Stigmasterol demonstrated the lowest binding energy for both IL-8 and LTB-4, suggesting its potential as an effective inhibitor for these proteins in COPD treatment.


Cite this article:
Bambang Irawan, Mulkan Azhary, Nirwana Lazuardi Sary. In Silico Studies of Bioactive Compounds of Hibiscus rosa-sinensis Against IL-8 and LTB-4 in Chronic Obstructive Pulmonary Disease. Research Journal of Pharmacy and Technology. 2025;18(6):2700-7. doi: 10.52711/0974-360X.2025.00388

Cite(Electronic):
Bambang Irawan, Mulkan Azhary, Nirwana Lazuardi Sary. In Silico Studies of Bioactive Compounds of Hibiscus rosa-sinensis Against IL-8 and LTB-4 in Chronic Obstructive Pulmonary Disease. Research Journal of Pharmacy and Technology. 2025;18(6):2700-7. doi: 10.52711/0974-360X.2025.00388   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-6-41


REFERENCES:
1.    Wang Y, Xu J, Meng Y, Adcock IM, Yao X. Role of inflammatory cells in airway remodeling in COPD. International Journal of Chronic Obstructive Pulmonary Disease. 2018: 3341-48. https://doi.org/10.2147/copd.s176122
2.    Sales de Campos P, Olsen WL, Wymer JP, Smith BK. Respiratory therapies for Amyotrophic Lateral Sclerosis: A state of the art review. Chron Respir Dis. 2023; 20: 14799731231175915. https://doi.org/10.1177/14799731231175915
3.    Vijay J, Raju A, Joseph A, et al. A Prospective Study to assess the impact of Formoterol and Budesonide Nebulization as add on therapy in the management of Acute Exacerbation of COPD in a Tertiary Care Hospital. Research Journal of Pharmacy and Technology. 2021; 14(3): 1723-28. http://dx.doi.org/10.15761/CMR.1000153
4.    Boers E, Barrett M, Su JG, et al. Global Burden of Chronic Obstructive Pulmonary Disease Through 2050. JAMA Netw Open 2023;6(12):e2346598. https://doi.org/10.1001/jamanetworkopen.2023.46598
5.    Martini S, Artanti KD, Hargono A, et al. Association between percentage of smokers and prevalence of smoking attributable morbidity in Indonesia: one decade after implementation of smoke-free area regulation. BMC Public Health. 2022; 22(1): 2202. http://dx.doi.org/10.1186/s12889-022-14435-8
6.    Mahdi BM. Physical human activity, immunity and COVID-19. Research Journal of Pharmacy and Technology. 2023; 16(1): 278-86. https://doi.org/10.52711/0974-360X.2023.00051
7.    Akkoyunlu M, Malawista SE, Anguita J, Fikrig E. Exploitation of interleukin-8-induced neutrophil chemotaxis by the agent of human granulocytic ehrlichiosis. Infect Immun. 2001; 69(9): 5577-88. https://doi.org/10.1128/IAI.69.9.5577-5588.2001
8.    Reynolds CJ, Quigley K, Cheng X, et al. Lung Defense through IL-8 Carries a Cost of Chronic Lung Remodeling and Impaired Function. Am J Respir Cell Mol Biol. 2018; 59(5): 557-71. https://doi.org/10.1165/rcmb.2018-0007oc
9.    Pease JE, Sabroe I. The role of interleukin-8 and its receptors in inflammatory lung disease: implications for therapy. Am J Respir Med. 2002;1(1):19-25. https://doi.org/10.1007/bf03257159
10.    Lee KH, Lee CH, Jeong J, Jang AH, Yoo CG. Neutrophil Elastase Differentially Regulates Interleukin 8 (IL-8) and Vascular Endothelial Growth Factor (VEGF) Production by Cigarette Smoke Extract. J Biol Chem. 2015; 290(47): 28438-45. https://doi.org/10.1074/jbc.m115.663567
11.    Tian W, Jiang X, Kim D, et al. Leukotrienes in Tumor-Associated Inflammation. Front Pharmacol. 2020; 11: 1289. https://doi.org/10.3389/fphar.2020.01289
12.    Luo J, Ma Q, Tang H, et al. LTB4 Promotes Acute Lung Injury via Upregulating the PLCε-1/TLR4/NF-κB Pathway in One-Lung Ventilation. Dis Markers. 2022; 2022: 1839341. https://doi.org/10.1155/2022/1839341
13.    Cazzola M, Hanania NA, Page CP, Matera MG. Novel Anti-Inflammatory Approaches to COPD. Int J Chron Obstruct Pulmon Dis. 2023; 18: 1333-52. https://doi.org/10.2147/COPD.S419056
14.    Dayal R, Kumar B, Melkani I, et al. Hepatoprotective potential of aqueous extract of Hibiscus rosasinensis and Butea monosperma against Fe-NTA induced hepatotoxicity in rats. Research Journal of Pharmacy and Technology. 2022; 15(7): 3213-20. https://doi.org/10.52711/0974-360X.2022.00539
15.    Basumatary S, Changmai N. Biological materials assisted synthesis of silver nanoparticles and potential applications: A review. Research Journal of Pharmacy and Technology. 2018; 11(6): 2681-94. https://doi.org/10.5958/0974-360X.2018.00497.3
16.    Mukhi S, Bose A, Das DK, et al. Acute and sub-acute toxicity study of amrtadi churna. Research Journal of Pharmacy and Technology. 2021; 14(6): 3111-18. https://doi.org/10.52711/0974-360X.2021.00543
17.    Amtaghri S, Qabouche A, Slaoui M, Eddouks M. A Comprehensive Overview of Hibiscus rosa-sinensis L.: Its Ethnobotanical Uses, Phytochemistry, Therapeutic Uses, Pharmacological Activities, and Toxicology. Endocr Metab Immune Disord Drug Targets. 2024; 24(1): 86-115. https://doi.org/10.2174/1871530323666230522113405
18.    Nguyen C, Baskaran K, Pupulin A, et al. Hibiscus flower extract selectively induces apoptosis in breast cancer cells and positively interacts with common chemotherapeutics. BMC Complement Altern Med. 2019; 19(1): 98. https://doi.org/10.1186/s12906-019-2505-9
19.    Soraya C, Alibasyah ZM, Nazar M, Gani BA. Chemical Constituents of Moringa oleifera Leaves of Ethanol Extract and its Cytotoxicity against Enterococcus faecalis of Root Canal Isolate. Research Journal of Pharmacy and Technology. 2022; 15(8): 3523-30. http://dx.doi.org/10.52711/0974-360X.2022.00591
20.    Yusuf H, Husna F, Gani BA, Garrido G. The chemical composition of the ethanolic extract from Chromolaena odorata leaves correlates with the cytotoxicity exhibited against colorectal and breast cancer cell lines. Journal of Pharmacy and Pharmacognosy Research. 2021; 9(3): 344-56. http://dx.doi.org/10.56499/jppres20.969_9.3.344
21.    Yanti N, Nurliza C, Gani BA. Evaluating the Sapindusrarak DC Chemical compounds for their ability to inhibit the growth of Fusobacterium nucleatum In vitro. Research Journal of Pharmacy and Technology. 2023; 16(3): 1231-38. https://doi.org/10.52711/0974-360X.2023.00204
22.    Soraya C, Syafriza D, Gani BA. Antibacterial effect of Moringa oleifera gel to prevent the growth, biofilm formation, and cytotoxicity of Streptococcus mutans. Journal of International Dental and Medical Research. 2022; 15(3): 1053-61.
23.    Clemen-Pascual LM, Macahig RAS, Rojas NRL. Comparative toxicity, phytochemistry, and use of 53 Philippine medicinal plants. Toxicology Reports. 2022; 9: 22-35. https://doi.org/10.1016/j.toxrep.2021.12.002
24.    Gupta S, Bisnoi JP, Singh DD, Singh R. Effect of different drying technique on the bioactive components of Terminalia arjuna bark. Research Journal of Pharmacy and Technology. 2019; 12(5): 2372-78. http://dx.doi.org/10.5958/0974-360X.2019.00397.4
25.    Chung KF. Inflammatory mediators in chronic obstructive pulmonary disease. Curr Drug Targets Inflamm Allergy. 2005; 4(6): 619-25. https://doi.org/10.2174/156801005774912806
26.    Al-Snafi AE. Chemical constituents, pharmacological effects and therapeutic importance of Hibiscus rosa-sinensis-A review. IOSR Journal of Pharmacy. 2018; 8(7): 101-19.
27.    Zeng L, Lin Z, Kang P, et al. Identification of Interleukin-1-Beta Inhibitors in Gouty Arthritis Using an Integrated Approach Based on Network Pharmacology, Molecular Docking, and Cell Experiments. Evid Based Complement Alternat Med. 2022; 2022: 2322417. https://doi.org/10.1155/2022/2322417
28.    Sharma P, Rajput A, Kumar N, et al. Antioxidant activity and inhibitory potential of Hibiscus rosa-sinensis flower extract against the key enzymes relevant for hyperglycemia: in-vitro and in-silico studies. Minerva Biotechnology and Biomolecular Research. 2023; 35. https://doi.org/10.23736/S2724-542X.23.02970-X
29.    Mejía JJ, Sierra LJ, Ceballos JG, Martínez JR, Stashenko EE. Color, Antioxidant Capacity and Flavonoid Composition in Hibiscus rosa-sinensis Cultivars. Molecules. 2023; 28(4). http://dx.doi.org/10.3390/molecules28041779
30.    Zulkefli N, Che Zahari CNM, Sayuti NH, et al. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective. Int J Mol Sci. 2023; 24(5). https://doi.org/10.3390/ijms24054607
31.    Khan ZA, Naqvi SA, Mukhtar A, et al. Antioxidant and antibacterial activities of Hibiscus Rosa-sinensis Linn flower extracts. Pak J Pharm Sci. 2014; 27(3): 469-74.
32.    Deepika E, Santhy K. In vitro Antioxidant and Antidiabetic activity of Silver Nanoparticles Synthesized using Catharanthus roseus leaves. Research Journal of Pharmacy and Technology. 2022; 15(3): 989-97. https://doi.org/10.52711/0974-360X.2022.00165
33.    Jasti T, Senapathi M, Sasank P, Bobbarala V, Prameela K. Evaluation of Anti-oxidant, Anti-microbial and Phytochemical analysis of different parts of C. bipinatus. Research Journal of Pharmacy and Technology. 2022; 15(4): 1455-60. https://doi.org/10.52711/0974-360X.2022.00241
34.    Al-Khayri JM, Sahana GR, Nagella P, et al. Flavonoids as Potential Anti-Inflammatory Molecules: A Review. Molecules. 2022; 27(9). https://doi.org/10.3390/molecules27092901
35.    Hussain T, Tan B, Yin Y, et al. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxid Med Cell Longev. 2016; 2016: 7432797. https://doi.org/10.1155/2016/7432797
36.    Yan L, Shen J, Wang J, et al. Nanoparticle-Based Drug Delivery System: A Patient-Friendly Chemotherapy for Oncology. Dose Response. 2020; 18(3): 1559325820936161. https://doi.org/10.1177/1559325820936161
37.    Kaur S. Hibiscus Rosa Sinensis and its Phytochemical Investigations. Acta Scientific Neurology. 2023;6:49-53. http://dx.doi.org/10.31080/ASNE.2023.06.0654
38.    Shin DU, Eom JE, Song HJ, et al. Camellia sinensis L. Alleviates Pulmonary Inflammation Induced by Porcine Pancreas Elastase and Cigarette Smoke Extract. Antioxidants (Basel). 2022; 11(9). https://doi.org/10.3390/antiox11091683
39.    Poto R, Loffredo S, Palestra F, et al. Angiogenesis, lymphangiogenesis, and inflammation in chronic obstructive pulmonary disease (COPD): few certainties and many outstanding questions. Cells. 2022; 11(10): 1720. https://doi.org/10.3390/cells11101720
40.    Shahrajabian MH. Medicinal herbs with anti-inflammatory activities for natural and organic healing. Current Organic Chemistry. 2021; 25(23): 2885-901. http://dx.doi.org/10.2174/1385272825666211110115656


Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available