Author(s): Pushpa P. Gupta, Akhilesh Kumar Sahu, Amit Roy, Shashikant Chandrakar

Email(s): sahuakhikhilesh11@gmail.com

DOI: 10.52711/0974-360X.2025.00386   

Address: Pushpa P. Gupta1, Akhilesh Kumar Sahu2*, Amit Roy1, Shashikant Chandrakar3
1Chhatrapati Shivaji Institute of Pharmacy, Durg (CG) – 49.
2Sanskar City College of Pharmacy, Rajnandgaon (CG) – 491441.
3Columbia Institute of Pharmacy, Raipur (CG) – 493111.
*Corresponding Author

Published In:   Volume - 18,      Issue - 6,     Year - 2025


ABSTRACT:
This research assessed the antidiabetic efficacy of mucilage derived from Hibiscus sabdariffa leaves in streptozotocin (STZ)-induced diabetic rats. The mucilage was orally administered at doses of 300 mg/kg and 600 mg/kg for a duration of 21 days, with metformin (65mg/kg) serving as a positive control. The evaluated key indicators comprised overnightfasting blood glucose (FBG), body weight, lipid composition, haematological characteristics, and antioxidant activity. The results indicated a substantial 30% decrease in fasting blood glucose levels in the 600 mg/kg mucilage group relative to the diabetes controls. Furthermore, the mucilage enhanced body weight stability and lipid profiles, resulting in significant reductions in overall cholesterol (18.9%), triglycerides (27.1%), and LDL, while simultaneously increasing HDL. The mucilage showed no toxicity at doses up to 2000 mg/kg and did not negatively impact haematological markers. The phytochemical examination revealed the presence of carbohydrates, polysaccharides, and phenols (55.41±0.6mg GAE/g) in the plant. The DPPH assay indicated modest antioxidant activity (IC50 = 79.12µg/ml). The findings indicate that Hibiscus sabdariffa leaf mucilage exhibits notable antidiabetic and hypolipidemic characteristics, possibly due to its polysaccharide and phenolic constituents, and may function as a safe, natural medicinal agent for diabetes control.


Cite this article:
Pushpa P. Gupta, Akhilesh Kumar Sahu, Amit Roy, Shashikant Chandrakar. Uncovering The Antidiabetic Potential of Hibiscus sabdariffa leaf Mucilage: A Natural approach to Managing Glycaemic and Lipid Levels. Research Journal of Pharmacy and Technology. 2025;18(6):2686-6. doi: 10.52711/0974-360X.2025.00386

Cite(Electronic):
Pushpa P. Gupta, Akhilesh Kumar Sahu, Amit Roy, Shashikant Chandrakar. Uncovering The Antidiabetic Potential of Hibiscus sabdariffa leaf Mucilage: A Natural approach to Managing Glycaemic and Lipid Levels. Research Journal of Pharmacy and Technology. 2025;18(6):2686-6. doi: 10.52711/0974-360X.2025.00386   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-6-39


REFERENCES:
1.    Rahman MM, Dhar PS, Sumaia, Anika F, Ahmed L, Islam MR, et al. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed Pharmacother. 2022; 152: 113217. https://doi.org/10.1016/j.biopha.2022.113217
2.    Zhao C, Yang C, Wai STC, Zhang Y, P. Portillo M, Paoli P, et al. Regulation of glucose metabolism by bioactive phytochemicals for the management of type 2 diabetes mellitus. Crit Rev Food Sci Nutr. 2019; 59(6): 830–47.https://doi.org/10.1080/10408398.2018.1501658
3.    Hansawasdi C, Kawabata J. α-Glucosidase inhibitory effect of mulberry (Morus alba) leaves on Caco-2. Fitoterapia. 2006; 77(7–8): 568–73. 
4.    Tran N, Pham B, Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology (Basel). 2020; 9(9): 1–31. 
5.    Sun C, Zhao C, Guven EC, Paoli P, Simal-Gandara J, Ramkumar KM, et al. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Front. 2020; 1(1): 18–44. 
6.    Sabu MC, Kuttan R. Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J Ethnopharmacol. 2002; 81(2): 155–60. 
7.    Sadikan MZ, Abdul Nasir NA, Lambuk L, Mohamud R, Reshidan NH, Low E, et al. Diabetic retinopathy: a comprehensive update on in vivo, in vitro and ex vivo experimental models. BMC Ophthalmol. 2023; 23(1): 1–14. 
8.    Chuengsamarn S, Rattanamongkolgul S, Phonrat B, Tungtrongchitr R, Jirawatnotai S. Reduction of atherogenic risk in patients with type 2 diabetes by curcuminoid extract: A randomized controlled trial. J Nutr Biochem. 2014; 25(2): 144–50.http://dx.doi.org/10.1016/j.jnutbio.2013.09.013
9.    Riaz G, Chopra R. A review on phytochemistry and therapeutic uses of Hibiscus sabdariffa L. Biomed Pharmacother. 2018;102(March):575–86.https://doi.org/10.1016/j.biopha.2018.03.023
10.    Clímaco GN, Vardanega R, Fasolin LH. Hibiscus sabdariffa L. leaves as an alternative source of bioactive compounds obtained through high pressure technologies. J Supercrit Fluids 2023;200(May):105968.https://doi.org/10.1016/j.supflu.2023.105968
11.    Ali BH, Al Wabel N, Blunden G. Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: A review. Phyther Res. 2005;19(5):369–75. 
12.    Bule M, Albelbeisi AH, Nikfar S, Amini M, Abdollahi M. The antidiabetic and antilipidemic effects of Hibiscus sabdariffa: A systematic review and meta-analysis of randomized clinical trials. Food Res Int. 2020; 130: 108980. https://doi.org/10.1016/j.foodres.2020.108980
13.    Jamrozik D, Borymska W, Kaczmarczyk-Żebrowska I. Hibiscus sabdariffa in Diabetes Prevention and Treatment—Does It Work? An Evidence-Based Review. Foods. 2022;11(14). 
14.    Peng CH, Chyau CC, Chan KC, Chan TH, Wang CJ, Huang CN. Hibiscus sabdariffa polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance. J Agric Food Chem. 2011;59(18):9901–9. 
15.    Banwo K, Sanni A, Sarkar D, Ale O, Shetty K. Phenolics-Linked Antioxidant and Anti-hyperglycemic Properties of Edible Roselle (Hibiscus sabdariffa Linn.) Calyces Targeting Type 2 Diabetes Nutraceutical Benefits in vitro. Front Sustain Food Syst. 2022;6(January):1–13. 
16.    Ameena K, Dilip C, Saraswathi R, Krishnan PN, Sankar C, Simi SP. Isolation of the mucilages from Hibiscus rosasinensis linn. and Okra (Abelmoschus esculentus linn.) and studies of the binding effects of the mucilages. Asian Pac J Trop Med. 2010;3(7):539–43.http://dx.doi.org/10.1016/S1995-7645(10)60130-7
17.    Tosif MM, Najda A, Bains A, Kaushik R, Dhull SB, Chawla P, et al. A comprehensive review on plant-derived mucilage: Characterization, functional properties, applications, and its utilization for nanocarrier fabrication. Polymers (Basel). 2021; 13(7). 
18.    Jabeur I, Pereira E, Barros L, Calhelha RC, Soković M, Oliveira MBPP, et al. Hibiscus sabdariffa L. as a source of nutrients, bioactive compounds and colouring agents. Food Res Int. 2017;100(August):717–23. 
19.    Lira MM, Oliveira Filho JG de, Sousa TL de, Costa NM da, Lemes AC, Fernandes SS, et al. Selected plants producing mucilage: Overview, composition, and their potential as functional ingredients in the development of plant-based foods. Food Res Int. 2023;169(October 2022):112822.https://doi.org/10.1016/j.foodres.2023.112822
20.    De Los Santos-Santos MA, Balois-Morales R, Jiménez-Zurita JO, Alia-Tejacal I, López-Guzmán GG, Palomino-Hermosillo YA, et al. Edible Coating Based on Roselle (Hibiscus sabdariffa L.) Mucilage Applied to Soursop Fruits in Postharvest Storage. J Food Qual. 2020;2020. 
21.    Bahadur S, Roy A, Baghel P, Choudhury A, Saha S, Chanda R. Formulation and evaluation of glipizide tablets utilizing Hibiscus rosasinensis leaves mucilage. Indones J Pharm. 2018;29(1):23–8. 
22.    Deore SL, Khadabadi SS. Standardisation and pharmaceutical evaluation of Chlorophytum borivilianum mucilage. Rasayan J Chem. 2008;1(4):887–92. 
23.    Chouhan KBS, Tandey R, Sen KK, Mehta R, Mandal V. Extraction of phenolic principles: value addition through effective sample pretreatment and operational improvement. J Food Meas Charact. 2019;13(1):177–86. 
24.    Chouhan KBS, Mukherjee S, Mandal V. Reconfiguring extraction of phenolics and flavonoids through a solvent-free gravity assisted model for the complete recovery of target analytes from moringa leaves: A complete overhauling attempt in the field of botanical extraction. Sustain Chem Pharm. 2022;29(June):100805.https://doi.org/10.1016/j.scp.2022.100805
25.    Altyar AE, Munir A, Ishtiaq S, Rizwan M, Abbas K, Kensara O, et al. Malva parviflora Leaves and Fruits Mucilage as Natural Sources of Anti-Inflammatory, Antitussive and Gastro-Protective Agents: A Comparative Study Using Rat Models and Gas Chromatography. Pharmaceuticals. 2022;15(4). 
26.    Attia EZ, Khalifa MF, Fahim JR, Kamel MS. Anti-diabetic potential of mucilage from Hippeastrum vittatum bulbs in streptozotocin-induced diabetic rats. South African J Bot. 2021;136:100–4.https://doi.org/10.1016/j.sajb.2020.06.027
27.    Elkhalifa AEO, Al-Shammari E, Adnan M, Alcantara JC, Mehmood K, Eltoum NE, et al. Development and characterization of novel biopolymer derived from Abelmoschus esculentus l. Extract and its antidiabetic potential. Molecules. 2021;26(12). 
28.    de Souza Ferreira F, Cavalcante HC, Dutra LMG, Alves AF, Gonçalves SAA, Pimentel TC, et al. In vitro antidiabetic activity of facheiro (Pilosocereus pachycladus) mucilage and its effects on glycaemic, renal and hepatic parameters in obese rats. J Funct Foods. 2025;124(December 2024). 
29.    Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J nephropharmacology. 2015;4(1):27–30.
30.    Murillo S, Mallol A, Adot A, Juárez F, Coll A, Gastaldo I, et al. Culinary strategies to manage glycemic response in people with type 2 diabetes: A narrative review. Front Nutr. 2022;9(November):1–10. 
31.    Gothai S, Ganesan P, Park SY, Fakurazi S, Choi DK, Arulselvan P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target. Nutrients. 2016;8(8). 
32.    El-Nashar HAS, Taleb M, EL-Shazly M, Zhao C, Farag MA. Polysaccharides (pectin, mucilage, and fructan inulin) and their fermented products: A critical analysis of their biochemical, gut interactions, and biological functions as antidiabetic agents. Phyther Res. 2024;38(2):662–93. 
33.    Mozaffari-Khosravi H, Jalali-Khanabadi BA, Afkhami-Ardekani M, Fatehi F, Noori-Shadkam M. The effects of sour tea (Hibiscus sabdariffa) on hypertension in patients with type II diabetes. J Hum Hypertens. 2009;23(1):48–54. 
34.    Khan IU, Jamil Y, Khan A, Ahmad J, Iqbal A, Ali S, et al. Pichia pastoris Mediated Digestion of Water-Soluble Polysaccharides from Cress Seed Mucilage Produces Potent Antidiabetic Oligosaccharides. Pharmaceuticals. 2024;17(6). 
35.    Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;21(10). 
36.    Adeyemi DO, Ukwenya VO, Obuotor EM, Adewole SO. Anti-hepatotoxic activities of Hibiscus sabdariffa L. In animal model of streptozotocin diabetes-induced liver damage. BMC Complement Altern Med. 2014;14(1):1–11. 
37.    Chand M, Chopra R, Talwar B, Homroy S, Singh PK, Dhiman A, et al. Unveiling the potential of linseed mucilage, its health benefits, and applications in food packaging. Front Nutr. 2024;11(February):1–20. 
38.    Uddin Zim AFMI, Khatun J, Khan MF, Hossain MA, Haque MM. Evaluation of in vitro antioxidant activity of okra mucilage and its antidiabetic and antihyperlipidemic effect in alloxan-induced diabetic mice. Food Sci Nutr. 2021;9(12):6854–65. 
39.    McCune LM, Johns T. Antioxidant activity in medicinal plants associated with the symptoms of diabetes mellitus used by the Indigenous Peoples of the North American boreal forest. J Ethnopharmacol. 2002;82(2–3):197–205. 
40.    Tsai PJ, McIntosh J, Pearce P, Camden B, Jordan BR. Anthocyanin and antioxidant capacity in Roselle (Hibiscus sabdariffa L.) extract. Food Res Int. 2002;35(4):351–6. 
41.    Archana G, Sabina K, Babuskin S, Radhakrishnan K, Fayidh MA, Azhagu Saravana Babu P, et al. Preparation and characterization of mucilage polysaccharide for biomedical applications. Carbohydr Polym. 2013;98(1):89–94. 
42.    Sangeethapriya M, Siddhuraju P. Health related functional characteristics and antioxidant potential of mucilage (dietary fiber)from Zizyphus mauritiana fruits. Food Sci Hum Wellness. 2014;3(2):79–88.http://dx.doi.org/10.1016/j.fshw.2014.05.003
43.    Kumar GS, Shetty AK, Sambaiah K, Salimath P V. Antidiabetic property of fenugreek seed mucilage and spent turmeric in streptozotocin-induced diabetic rats. Nutr Res. 2005;25(11):1021–8. 
44.    Gibb RD, McRorie JW, Russell DA, Hasselblad V, D’Alessio DA. Psyllium fiber improves glycemic control proportional to loss of glycemic control: A meta-analysis of data in euglycemic subjects, patients at risk of type 2 diabetes mellitus, and patients being treated for type 2 diabetes mellitus. Am J Clin Nutr. 2015;102(6):1604–14.https://doi.org/10.3945/ajcn.115.106989
45.    Farombi EO, Ige OO. Hypolipidemic and antioxidant effects of ethanolic extract from dried calyx of Hibiscus sabdariffa in alloxan-induced diabetic rats. Fundam Clin Pharmacol. 2007;21(6):601–9. 
46.    Hassan I, Gani A, Ahmad M, Banday J. Extraction of polysaccharide from Althea rosea and its physicochemical, anti-diabetic, anti-hypertensive and antioxidant properties. Sci Rep. 2022;12(1):1–15.https://doi.org/10.1038/s41598-022-20134-6



Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available