Author(s): Akmaljon D. Raximov, Mamurjon K. Pozilov, Nazokatxon X. Yakubova, Makhmud B. Gafurov, Kuralbay Zh. Rezhepov, Muzaffar I. Asrarov, Zafarjon M. Ernazarov

Email(s): akmaljon.raximov.94@list.ru

DOI: 10.52711/0974-360X.2025.00368   

Address: Akmaljon D. Raximov1*, Mamurjon K. Pozilov2, Nazokatxon X. Yakubova3, Makhmud B. Gafurov3, Kuralbay Zh. Rezhepov3, Muzaffar I. Asrarov1, Zafarjon M. Ernazarov4
1Institute of Biophysics and Biochemistry at The National University of Uzbekistan. 100174, Tashkent City, Almazar District, Students Town, University St., 174.
2National University of Uzbekistan. Tashkent, Uzbekistan. 100174, Tashkent City, Almazar District, Students Town, University St., 174.
3 The Institute of Bioorganic Chemistry Named After A.S. Sadikov. 100125, Tashkent City, Mirzo Ulugbek District, Mirzo Ulugbek Avenue, 83.
4Kokand State Pedagogical Institute. Kokand, Uzbekistan. 150700, Turon Str., 23.
*Corresponding Author

Published In:   Volume - 18,      Issue - 6,     Year - 2025


ABSTRACT:
In this article, the effect of the diazoimino derivative gossypol [(((4,4'-bis((1,5-dimetil-3-okso-2-fenil-2,3-digidro-1H-pirazol-4-il) diazenil)-1,1',6,6'-tetragidroksi-5,5'-diizopropil-3,3'-dimetil-7,7'-diokso-[2,2'-binaftalin]-8,8'(7H,7'H)-diiliden)bis(metanililiden))bis(azanedil))bis(etan-2,1-diyl) bis(vodorod sulfat))] (YaN-1) on the swelling of cardiac mitochondria, the conductivity of the mitoKATP channel, and the lipid peroxidation process were determined by recording changes in optical density on a spectrophotometer. Polyphenol YaN-1, diazoimino derivative of gossypol, inhibited mPTP in rat heart mitochondria, causing an increase in the activity of mitoKATP channels compared to the control. It was established that the polyphenol YaN-1 has antioxidant properties, reducing the intensity of the lipid oxidation process in the inner and outer membranes of mitochondria.


Cite this article:
Akmaljon D. Raximov, Mamurjon K. Pozilov, Nazokatxon X. Yakubova, Makhmud B. Gafurov, Kuralbay Zh. Rezhepov, Muzaffar I. Asrarov, Zafarjon M. Ernazarov. Effect of polyphenol YaN-1, a Diazoimino derivative of gossypol, on the membrane of Cardiac Mitochondria. Research Journal of Pharmacy and Technology. 2025;18(6):2575-1. doi: 10.52711/0974-360X.2025.00368

Cite(Electronic):
Akmaljon D. Raximov, Mamurjon K. Pozilov, Nazokatxon X. Yakubova, Makhmud B. Gafurov, Kuralbay Zh. Rezhepov, Muzaffar I. Asrarov, Zafarjon M. Ernazarov. Effect of polyphenol YaN-1, a Diazoimino derivative of gossypol, on the membrane of Cardiac Mitochondria. Research Journal of Pharmacy and Technology. 2025;18(6):2575-1. doi: 10.52711/0974-360X.2025.00368   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-6-21


REFERENCES:
1.    Carmen A. Mannella. The relevance of mitochondrial membrane topology to mitochondrial function. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2006; 1762(2): 140-147. https://doi.org/10.1016/j.bbadis.2005.07.001.
2.    Raaflaub J. Die schwellung isolierter leberzell mitochondrien und ihre physikalisch beeinfluβarkeit. Helv Physiol Pharmacol Acta. 1953; 11: 142–156.
3.    Raaflaub J. Über den wirkungsmechanismus von adenosintriphosphat (ATP) als cofaktor isolierter mitochondrien. Helv Physiol Pharmacol Acta. 1953; 11(2): 157–165. 
4.    Hunter F.E., Jr., Ford L. Inactivation of oxidative and phosphorylative systems in mitochondria by preincubation with phosphate and other ions. J Biol Chem. 1955; 216(1): 357–369.
5.    Pfeiffer D.R., Kuo T.H., Tchen T.T. Some effects of Ca2+, Mg2+, and Mn2+ on the ultrastructure, light-scattering properties, and malic enzyme activity of adrenal cortex mitochondria. Arch Biochem Biophys. 1976; 176: 556–563. doi:10.1016/0003-9861(76)90199-5
6.    Bernardi P, Di Lisa F. The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol. 2015; 78: 100-6. doi: 10.1016/j.yjmcc.2014.09.023. 
7.    Hunter D.R., Haworth R.A., Southard J.H. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem. 1976; 251(16): 5069–5077.
8.    Hunter D.R., Haworth R.A. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+release. Arch Biochem Biophys. 1979; 195(2): 468–477. doi: 10.1016/0003-9861(79)90373-4
9.    Namrata Prajapati, Jaideep Singh. Calpain: An Emerging Therapeutic Target. Research Journal of Pharmacology and Pharmacodynamics. 2024; 16(1): 25-9.
10.    Kinnally K.W., Campo M.L., Tedeschi H. Mitochondrial channel activity studied by patch-clamping mitoplasts. J Bioenerg Biomembr. 1989; 21(2): 497–506. doi: 10.1007/BF00762521.
11.    Petronilli V., Szabó I., Zoratti M. The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett. 1989; 259(1): 137–143. doi: 10.1016/0014-5793(89)81513-3.
12.    Halestrap A.P. The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury // Biochem. Soc. Symp. 1999; 66: 181–203. doi: 10.1042/bss0660181.
13.    Juhaszova M., Wang S., Zorov D.B., Nuss H.B., Gleichmann M., Mattson M.P., Sollott S.J. The Identity and Regulation of the Mitochondrial Permeability Transition Pore. Where the Known Meets the Unknown. Ann. N.Y. Acad. Sci. 2008; 1123: 197-212. doi: 10.1196/annals.1420.023.
14.    Demidchik V, Davenport RJ, Tester M. Nonselective cation channels in plants. Annu Rev Plant Biol. 2002; 53: 67-107. doi: 10.1146/annurev.arplant.53.091901.161540.
15.    Mahendra Kumar Sahu, Trilochan Satapathy, Ashish Kumar Netam, Jhakeshwar Prasad. Structural Architecture and Signal Transduction of Ion Channels: A Review. Res. J. Pharmacology and Pharmacodynamics. 2018; 10(1): 38-44.
16.    Alberto T. Gatta, Tim P. Levine. Piecing Together the Patchwork of Contact Sites, Trends in Cell Biology, Volume 27, Issue 3, 2017, Pages 214-229, https://doi.org/10.1016/j.tcb.2016.08.010.
17.    Pozhilova E.V., Novikov V.G., Levchenkova O.S. The regulatory role of the mitochondrial pore and the possibility of its pharmacological modulation. Reviews on Clinical Pharmacology and Drug Therapy. 2014; 12(3): 13-19.
18.    Dmitry B. Zorov, Magdalena Juhaszova, Yael Yaniv, H. Bradley Nuss, Su Wang, and Steven J. Sollott. Regulation and pharmacology of the mitochondrial permeability transition pore. European Society of Cardiology. 2009; 83(2): 213–225. doi: 10.1093/cvr/cvp151
19.    V.E. Novikov, O.S. Levchenkova. Mitochondrial targets for pharmacological regulation of cell adaptation to hypoxia. Reviews on Clinical Pharmacology and Drug Therapy. 2014; 2: 28-35. https://doi.org/10.17816/RCF12228-35
20.    I. Arjun Rao, Moumita Sinha, Manju Sahu , Bharati Ahirwar. Disease Association of Mitochondrial DNA haplogroups. Research J. Pharm. and Tech. 2017; 10(12): 4445-4450.
21.    Szewczyk A., Jarmuszkiewicz W., Kunz W. S. Mitochondrial potassium channels. IUBMB Life. 2009; 61(2): 134-143. doi: 10.1002/iub.155.
22.    Pozhilova E.V., Novikov V.E., Levchenkova O.S. Mitochondrial ATP-dependent potassium channel and its pharmacological modulators. Reviews on Clinical Pharmacology and Drug Therapy. 2016; 14(1): 29-36. https://doi.org/10.17816/RCF14129-36
23.    Tinker A., Aziz Q., Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol. 2014; 171(1): 12-23. doi: 10.1111/bph.12407.
24.    Ada-Ioana Bunea, Stine Harloff-Helleberg, Rafael Taboryski, Hanne Mørck Nielsen, Membrane interactions in drug delivery: Model cell membranes and orthogonal techniques, Advances in Colloid and Interface Science. 2020; 281: 102177. https://doi.org/10.1016/j.cis.2020.102177.
25.    Karunakar Hegde, Cijo Issac, Arun B. Joshi. Inhibitory Response of Carissa carandas Root Extract on Lipid Peroxidation. Research J. Pharm. and Tech. 2010; 3(4): 1072-1076.
26.    Sies, H., Jones, DP. Reaktiv kislorod turlari (ROS) pleiotropik fiziologik signalizatsiya agentlari sifatida. Nat Rev Mol Cell Biol. 2020; 21: 363–383. https://doi.org/10.1038/s41580-020-0230-3
27.    Almeida A.M., Bertoncini C.R., Borecky J., Souza-Pinto N.C., Vercesi A.E. Mitochondrial DNA damage associated with lipid peroxidation of the mitochondrial membrane induced by Fe2+-citrat. An. Acad. Bras. Cienc.  2006; 78(3): 505-514. doi: 10.1590/s0001-37652006000300010.
28.    O. S. Ademowo H. K. I. Dias D. G. A. Burton H. R. Griffiths. Lipid (per) oxidation in mitochondria: an emerging target in the ageing process?  Biogerontology. 2017; 18(6): 859–879. doi: 10.1007/s10522-017-9710-z.
29.    V Nuthan Kumar Babu, Navneet Khurana. A Review on Mitochondrial Dysfunction and Oxidative stress due to Complex-Ⅰ in Parkinson Disease. Research Journal of Pharmacology and Pharmacodynamics. 2021; 13(4): 167-0.
30.    Swati R. Dhande, Vijay R. Patil. In vitro MTT Assay to Evaluate Mitochondrial Dysfunction in Rat Brain Synaptosomes. Research Journal of Pharmacy and Technology. 2024; 17(8): 3543-5.
31.    Adesh Upadhyay, Arun Mishra, Sachin Chaudhury, Pronobesh Chattopadhyay. Mitochondrial Anti-Oxidant Enzymes Caused by Cigarette Smoke in Experimental Wistar Rat. Research J. Pharm. and Tech. 2009; 2(4): 690-693.
32.    V. V. Teplovaa, E. P. Isakovab , O. I. Kleinb , D. I. Dergachovab , N. N. Gesslerb, and Y. I. Deryabinab. Natural Polyphenols: Biological Activity, Pharmacological Potential, Means of Metabolic Engineering (Review). 2018; 54: 221-237. doi: 10.1134/S0003683818030146.
33.    Aithamraju Satish Chandra, P. Shanmugapandiyan. Cardioprotective efficacy of Tridax procumbens methanolic extract in Doxorubicin induced Oxidative Cardiac Damage. Research J. Pharm. and Tech. 2020; 13(1): 110-113.
34.    Nguyen BY, Ruiz-Velasco A, Bui T, Collins L, Wang X, Liu W. Mitochondrial function in the heart: the insight into mechanisms and therapeutic potentials. Br J Pharmacol. 2019; 176(22): 4302-4318. doi: 10.1111/bph.14431. 
35.    Malathi Mangalanathan, Saraswathi Uthamaramasamy, Ramalingam Venkateswaran. Protective effect of Zanthoxylum armatum fruit on Heart Mitochondrial Antioxidants Against Isoproterenol Induced Cardiac Damage in Rats. Research J. Pharm. and Tech. 2018; 11(2):681-686.
36.    Di Marco G, Gherardi G, De Mario A, Piazza I, Baraldo M, Mattarei A, Blaauw B, Rizzuto R, De Stefani D, Mammucari C. The mitochondrial ATP-dependent potassium channel (mitoKATP) controls skeletal muscle structure and function. Cell Death Dis. 2024; 15(1): 58. doi: 10.1038/s41419-024-06426-x.
37.    Rasha H. Al-Rikabi, Hanady S. Al-Shmgani. Evaluation of Hesperidin Protective Effect on Lipopolysaccharide -Induced Inflammation and lipid Peroxidation in BALB/C Mail Mice. Research J. Pharm. and Tech. 2018; 11(12): 5513-5516.
38.    M.V. Egorova, S.A. Afanasyev. Isolation of mitochondria from cells and tissues of animals and human: modern methodical approaches. Siberian Medical Journal. 2011; 26: 22-28.
39.    Gornal A.G., Bardawill C.J., David M. Determination of Serum Protein by Means of Biuret Reaction. J. Biol. Chem. 1949; 177. 751-766. https://doi.org/10.1016/S0021-9258(18)57021-6.
40.    He.L, Lemasters J.J. Heat shock suppresses the permeability transition in rat liver mitochondria. J. Biol. Chem. 2003; 278(19): 16755-16760. doi: 10.1074/jbc.M300153200.
41.    Vadzyuk O.B., Kosterin S.A. Diazoxide-induced swelling of rat myometrial mitochondria as evidence of activation of the ATP-sensitive K+ channel. Ukr. biochem. MAGAZINE. 2008; 80(5): 45-51.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available