Author(s): Amir Mohamed Abdelhamid, Lashin Saad Ali, Hoda A. Fansa, Ahmed S.G. Srag El-Din

Email(s): ashawkey@yahoo.com

DOI: 10.52711/0974-360X.2025.00286   

Address: Amir Mohamed Abdelhamid1,2, Lashin Saad Ali3,4, Hoda A. Fansa5,6, Ahmed S.G. Srag El-Din7,8*
1Department of Clinical Pharmacy, College of Pharmacy, Almaaqal University, 61014 Basrah, Iraq.
2Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
3Department of basic medical science-faculty of dentistry- Al-Ahliyya Amman university-Amman-Jordan.
4Physiology Department-Mansoura faculty of Medicine Mansoura university-Mansoura-Egypt.
5Associate Professor of Oral Biology, Faculty of Dentistry, Al -Ahliyya Amman University, Jordan.
6Assistant Professor of Oral Biology, Faculty of Dentistry, Alexandria University, Egypt.
7Department of Pharmaceutics, College of Pharmacy, Almaaqal University, 61014 Basrah, Iraq.
8Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
*Corresponding Author

Published In:   Volume - 18,      Issue - 5,     Year - 2025


ABSTRACT:
Selenium is an essential trace element with significant biochemical and therapeutic properties, including antioxidants, immunomodulatory, and detoxifying activities. Despite its benefits, traditional forms of selenium face limitations in bioavailability, solubility, and a narrow safety window. Selenium nanoparticles have emerged as a promising alternative due to their enhanced bioavailability, lower toxicity, and versatile biological activities. Among various methods for Selenium nanoparticles synthesis, microwave irradiation has gained attention for its efficiency, uniform heating, and high yield. This review focuses on the preparation of Selenium nanoparticles using the microwave-assisted technique and examines the critical factors influencing their synthesis. Key parameters include the concentration of selenite salt, concentration of reducing agent, surfactant concentration, reaction time, and temperature, all of which play pivotal roles in determining the size, morphology, stability, and crystallinity of the resulting nanoparticles. Higher concentrations of selenite salt typically led to increased particle size and decreased stability, while the concentration of reducing agents directly impacts the reduction kinetics and nanoparticle properties. Surfactant concentration is crucial for controlling nanoparticle surface properties and stability, influencing interactions within the synthesis environment. Reaction time and temperature significantly affect nucleation, growth processes, crystallinity, and polymorph formation. Optimizing these factors is essential for tailoring Selenium nanoparticles with desirable attributes for diverse applications, particularly in biomedical and industrial sectors. This review emphasizes the importance of precise control over synthetic parameters in the microwave-assisted method, providing insights into the production of Selenium nanoparticles with enhanced functionalities.


Cite this article:
Amir Mohamed Abdelhamid, Lashin Saad Ali, Hoda A. Fansa, Ahmed S.G. Srag El-Din. Microwave-Assisted Synthesis of Selenium Nanoparticles: A Comprehensive Review on Optimizing Parameters for Enhanced Bioavailability and Therapeutic Potential. Research Journal of Pharmacy and Technology. 2025;18(5):2003-9. doi: 10.52711/0974-360X.2025.00286

Cite(Electronic):
Amir Mohamed Abdelhamid, Lashin Saad Ali, Hoda A. Fansa, Ahmed S.G. Srag El-Din. Microwave-Assisted Synthesis of Selenium Nanoparticles: A Comprehensive Review on Optimizing Parameters for Enhanced Bioavailability and Therapeutic Potential. Research Journal of Pharmacy and Technology. 2025;18(5):2003-9. doi: 10.52711/0974-360X.2025.00286   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-5-9


REFERENCE:
1.    El-Din ASS, Yehia A, Hamza E, A-Elgadir TME, Abd El-Fattah EE. Selenium nanoparticle ameliorates LPS-induced acute lung injury in rats through inhibition of ferroptosis, inflammation, and HSPs. Journal of Drug Delivery Science and Technology. 2024; 95: 105626. https://doi.org/10.1016/j.jddst.2024.105626
2.    Tapiero H, Townsend D, Tew K. The antioxidant role of selenium and seleno-compounds. Biomedicine & pharmacotherapy. 2003; 57(3-4): 134-144. https://doi.org/10.1016/S0753-3322(03)00035-0
3.    Menon R. Antioxidants and their therapeutic Potential-A review. Research Journal of Pharmacy and Technology. 2013; 6(12): 1426-1429. DOI : 0974-360X
4.    Zam W, Alshahneh M, Hasan A. Methods of spectroscopy for selenium determination: A review. Research Journal of Pharmacy and Technology. 2019; 12(12): 6149-6152. DOI: 10.5958/0974-360X.2019.01068.0
5.    Liu QJLTJ, Ni J. The molecular biology of selenoproteins and their effects on diseases. Progress in Chemistry. 2009; 21(05): 819. https://manu56.magtech.com.cn/progchem/EN/abstract/abstract9965.shtml.
6.    Gao X, Zhang J, Zhang L. Hollow sphere selenium nanoparticles: their in‐vitro anti hydroxyl radical effect. Advanced Materials. 2002; 14(4): 290-293. https://doi.org/10.1002/1521-4095(20020219)14:4<290::AID-ADMA290>3.0.CO;2-U
7.    Fairweather-Tait SJ, Bao Y, Broadley MR, et al. Selenium in human health and disease. Antioxidants & redox signaling. 2011; 14(7): 1337-1383. https://doi.org/10.1089/ars.2010.327
8.    Weekley CM, Harris HH. Which form is that? The importance of selenium speciation and metabolism in the prevention and treatment of disease. Chemical Society Reviews. 2013; 42(23): 8870-8894. https://doi.org/10.1039/C3CS60272A
9.    Masukawa T. Pharmacological and toxicological aspects of inorganic and organic selenium compounds. Organic Selenium and Tellurium Compounds (1987). 1987; 2: 377-392. https://doi.org/10.1002/9780470771785.ch9
10.    Pařízek J, Ošťádalová I. The protective effect of small amounts of selenite in sublimate intoxication. Experientia. 1967; 23(2): 142-143. https://doi.org/10.1007/BF02135970
11.    Ganther H, Goudie C, Sunde M, et al. Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna. Science. 1972; 175(4026): 1122-1124. DOI: 10.1126/science.175.4026.1122
12.    Iwata H, Okamoto H, Ohsawa Y. Effect of selenium on methylmercury poisoning. Research communications in chemical pathology and pharmacology. 1973; 5(3): 673-680. DOI: 10.1007/BF01684595.
13.    Ribeiro M, Zephyr N, Silva J, et al. Assessment of the mercury-selenium antagonism in rainbow trout fish. Chemosphere. 2022; 286: 131749. DOI: 10.1016/j.chemosphere.2021.131749
14.    Huang P, Yang W, Johnson VE, et al. Selenium–sulfur functionalized biochar as amendment for mercury-contaminated soil: High effective immobilization and inhibition of mercury re-activation. Chemosphere. 2022; 306: 135552.  DOI: 10.1016/j.chemosphere.2022.135552
15.    Gao P-C, Chu J-H, Chen X-W, Li L-X, Fan R-F. Selenium alleviates mercury chloride-induced liver injury by regulating mitochondrial dynamics to inhibit the crosstalk between energy metabolism disorder and NF-κB/NLRP3 inflammasome-mediated inflammation. Ecotoxicology and Environmental Safety. 2021; 228: 113018.  DOI: 10.1016/j.ecoenv.2021.113018
16.    Takahashi K, Encinar JR, Costa-Fernández JM, Ogra Y. Distributions of mercury and selenium in rats ingesting mercury selenide nanoparticles. Ecotoxicology and environmental safety. 2021; 226: 112867.  DOI: 10.1016/j.ecoenv.2021.112867
17.    Iwata H, Masukawa T, Kito H, Hayashi M. Involvement of tissue sulfhydryls in the formation of a complex of methylmercury with selenium. Biochemical pharmacology. 1981; 30(23): 3159-3163.   DOI: 10.1016/0006-2952(81)90513-x
18.    Naganuma A, Kojima Y, Imura N. Interaction of methylmercury and selenium in mouse: formation and decomposition of bis (methylmercuric) selenide. Research Communications in Chemical Pathology and Pharmacology. 1980; 30(2): 301-316. DOI: PMID: 7444160
19.    Moniruzzaman M, Lee S, Park Y, Min T, Bai SC. Evaluation of dietary selenium, vitamin C and E as the multi-antioxidants on the methylmercury intoxicated mice based on mercury bioaccumulation, antioxidant enzyme activity, lipid peroxidation and mitochondrial oxidative stress. Chemosphere. 2021; 273: 129673. DOI: 10.1016/j.chemosphere.2021.129673
20.    Gao PC, Chen XW, Chu JH, Li LX, Wang ZY, Fan RF. Antagonistic effect of selenium on mercuric chloride in the central immune organs of chickens: The role of microRNA‐183/135b‐FOXO1/TXNIP/NLRP3 inflammasome axis. Environmental Toxicology. 2022; 37(5): 1047-1057. DOI: 10.1002/tox.23463
21.    Kar A. Pervention of cadmium induced changes in the gonads of rat by zinc and selenium-A study in antagonism between metals in the biological system. Proc Nat Inst Sci India B26. 1960: 40-50.  DOI: 1573105974643044736
22.    Ge J, Guo K, Huang Y, et al. Comparison of antagonistic effects of nanoparticle-selenium, selenium-enriched yeast and sodium selenite against cadmium-induced cardiotoxicity via AHR/CAR/PXR/Nrf2 pathways activation. The Journal of Nutritional Biochemistry. 2022; 105: 108992. DOI: 10.1016/j.jnutbio.2022.108992
23.    Liang Z-Z, Zhang Y-X, Zhu R-M, et al. Identification of epigenetic modifications mediating the antagonistic effect of selenium against cadmium-induced breast carcinogenesis. Environmental Science and Pollution Research. 2022; 29(15): 22056-22068. DOI: 10.1007/s11356-021-17355-z
24.    Bi S-S, Talukder M, Jin H-T, et al. Nano-selenium alleviates cadmium-induced cerebellar injury by activating metal regulatory transcription factor 1 mediated metal response. Animal Nutrition. 2022; 11: 402-412.  DOI: 10.1016/j.aninu.2022.06.021
25.    Wagner PA, Hoekstra WG, Ganther HE. Alleviation of silver toxicity by selenite in the rat in relation to tissue glutathione peroxidase. Proceedings of the Society for Experimental Biology and Medicine. 1975; 148(4): 1106-1110. DOI: 10.3181/00379727-148-38697
26.    Rastogi SC, Clausen J, Srivastava K. Selenium and lead: mutual detoxifying effects. Toxicology. 1976; 6(3): 377-388. DOI: 10.1016/0300-483x(76)90041-x
27.    Maher W, Baldwin S, Deaker M, Lrving M. Characteristics of selenium in Australian marine biota. Applied Organometallic Chemistry. 1992; 6(2): 103-112. https://doi.org/10.1002/aoc.590060203
28.    Ishizaki M, Ueno S, Okazaki T, Suzuki T, Oyamada N. Interaction of arsenic and selenium on the metabolism of these elements in hamsters. Applied organometallic chemistry. 1988; 2(4): 323-331. https://doi.org/10.1002/aoc.590020408
29.    Czauderna M, Rochalska M. Interaction between Se and Cr and distribution of Zn, Rb, Co, and Fe in mice given chromate ions and selenium compounds. Journal of radioanalytical and nuclear chemistry. 1989; 134(2): 383-392. DOI: https://doi.org/10.1007/bf02278275
30.    Kędziorski A, Nakonieczny M, Świerczek E, Szulińska E. Cadmium-selenium antagonism and detoxifying enzymes in insects. Fresenius' journal of analytical chemistry. 1996; 354(5): 571-575. DOI: 10.1007/s0021663540571
31.    Soda K, Tanaka H, Esaki N. Biochemistry of physiologically active selenium compounds. Organic Selenium and Tellurium Compounds (1987). 1987; 2: 349-365.  https://doi.org/10.1002/9780470771785.ch7
32.    Kieliszek M, Błażejak S. Selenium: Significance, and outlook for supplementation. Nutrition. 2013; 29(5): 713-718. DOI: 10.1016/j.nut.2012.11.012
33.    Zhang J-S, Gao X-Y, Zhang L-D, Bao Y-P. Biological effects of a nano red elemental selenium. Biofactors. 2001; 15(1): 27-38. DOI: 10.1002/biof.5520150103
34.    Das TT. Role of antioxidants in health and diseases-a review. Research Journal of Pharmacy and Technology. 2015; 8(8): 1033-1037.  DOI : 10.5958/0974-360X.2015.00176.6
35.    Mahood HE, Abbood BM. Physiological and Histological Study of Preventive effect of Antioxidants, Selenium and Vitamin C with Garlic in Rats treated with Sodium Fluoride. Research Journal of Pharmacy and Technology. 2018; 11(3): 941-945. DOI : 10.5958/0974-360X.2018.00174.9
36.    Zhang J, Wang X, Xu T. Elemental selenium at nano size (Nano-Se) as a potential chemopreventive agent with reduced risk of selenium toxicity: comparison with se-methylselenocysteine in mice. Toxicological sciences. 2008; 101(1): 22-31. DOI: 10.1093/toxsci/kfm221
37.    Mellinas C, Jiménez A, Garrigós MdC. Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L. bean shell extract. Molecules. 2019; 24(22): 4048. DOI: 10.3390/molecules24224048
38.    Borowska M, Jiménez-Lamana J, Bierla K, Jankowski K, Szpunar J. A green and fast microwave-assisted synthesis of selenium nanoparticles and their characterization under gastrointestinal conditions using mass spectrometry. Food Chemistry. 2023; 417: 135864. DOI: 10.1016/j.foodchem.2023.135864
39.    Kulkarni NS, Gite PD, Munde MK, Dhole SN, Khiste RH. A comprehensive review on application of microwave irradiation for preparation of inclusion complexes with cyclodextrins. Research Journal of Pharmacy and Technology. 2021; 14(2): 1131-1136. DOI : 10.5958/0974-360X.2021.00203.1
40.    Deo S, Janghel A, Raut P, et al. Emerging microwave assisted extraction (MAE) techniques as an innovative green technologies for the effective extraction of the active phytopharmaceuticals. Research Journal of Pharmacy and Technology. 2015; 8(5): 655-666.  DOI : 10.5958/0974-360X.2015.00104.3
41.    Memon S, Bhise KS. Microwave irradiation technique: A green chemistry approach for dissolution enhancement of ritonavir. Research Journal of Pharmacy and Technology. 2023; 16(6): 2643-2648. DOI : 10.52711/0974-360X.2023.00434
42.    Renugadevi K, Kumar N, Nachiyar CV. Phytosynthesis of Silver Nanoparticle using Ginger extract as a Reducing agent by Microwave Irradiation method and invitro Evaluation of its Antibacterial activity and Cytotoxicity. Research Journal of Pharmacy and Technology. 2017; 10(12): 4142-4146. DOI: 10.5958/0974-360X.2017.00754.5
43.    Ranjitha VR, Rai VR. Selenium nanostructure: Progress towards green synthesis and functionalization for biomedicine. Journal of Pharmaceutical Investigation. 2021/03/01 2021; 51(2): 117-135. 10.1007/s40005-020-00510-y https://doi.org/10.1007/s40005-020-00510-y
44.    Kumar A, Kuang Y, Liang Z, Sun X. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Materials Today Nano. 2020; 11: 100076.  https://doi.org/10.1016/j.mtnano.2020.100076
45.    Wijianto B, Safitri CI. Synthesis of Mono-Carbonyl Analogues of Curcumin Assisted by Microwave Irradiation. Research Journal of Pharmacy and Technology. 2021; 14(9): 4591-4594.  DOI: 10.52711/0974-360X.2021.00798
46.    Nomanbhay S, Ong MY. A review of microwave-assisted reactions for biodiesel production. Bioengineering. 2017; 4(2): 57. DOI: 10.3390/bioengineering4020057
47.    Fardsadegh B, Vaghari H, Mohammad-Jafari R, Najian Y, Jafarizadeh-Malmiri H. Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using Pelargonium zonale leaf extract. Green Processing and synthesis. 2019; 8(1): 191-198.  https://doi.org/10.1515/gps-2018-0060
48.    Zhu J, Palchik O, Chen S, Gedanken A. Microwave assisted preparation of CdSe, PbSe, and Cu2-x Se nanoparticles. The Journal of Physical Chemistry B. 2000; 104(31): 7344-7347. DOI: 10.1021/jp001488t
49.    Skalickova S, Milosavljevic V, Cihalova K, Horky P, Richtera L, Adam V. Selenium nanoparticles as a nutritional supplement. Nutrition. 2017; 33: 83-90. DOI: 10.1016/j.nut.2016.05.001
50.    Ferro C, Florindo HF, Santos HA. Selenium nanoparticles for biomedical applications: from development and characterization to therapeutics. Advanced healthcare materials. 2021; 10(16): 2100598.   DOI: 10.1002/adhm.202100598
51.    Hawrylak-Nowak B. Selenite is more efficient than selenate in alleviation of salt stress in lettuce plants. Acta Biologica Cracoviensia Series Botanica. 2015; 57(2). DOI: 10.1515/abcsb-2015-0023
52.    Jadhav AA, Khanna PK. Impact of microwave irradiation on cyclo-octeno-1, 2, 3-selenadiazole: Formation of selenium nanoparticles and their polymorphs. Rsc Advances. 2015; 5(56): 44756-44763.  DOI: 10.1039/c5ra05701a
53.    El-Badri AM, Hashem AM, Batool M, et al. Comparative efficacy of bio-selenium nanoparticles and sodium selenite on morpho-physiochemical attributes under normal and salt stress conditions, besides selenium detoxification pathways in Brassica napus L. Journal of Nanobiotechnology. 2022; 20(1): 163. DOI: 10.1186/s12951-022-01370-4
54.    Akçay FA, Avcı A. Effects of process conditions and yeast extract on the synthesis of selenium nanoparticles by a novel indigenous isolate Bacillus sp. EKT1 and characterization of nanoparticles. Archives of Microbiology. 2020; 202(8): 2233-2243. DOI: 10.1007/s00203-020-01942-8
55.    Yan J-K, Qiu W-Y, Wang Y-Y, Wang W-H, Yang Y, Zhang H-N. Fabrication and stabilization of biocompatible selenium nanoparticles by carboxylic curdlans with various molecular properties. Carbohydrate Polymers. 2018/01/01/ 2018; 179: 19-27. https://doi.org/10.1016/j.carbpol.2017.09.063
56.    Kokila K, Elavarasan N, Sujatha V. Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New Journal of Chemistry. 2017; 41(15): 7481-7490.  DOI: 10.1039/c7nj01124e
57.    Sheikhlou K, Allahyari S, Sabouri S, Najian Y, Jafarizadeh-Malmiri H. Walnut leaf extract-based green synthesis of selenium nanoparticles via microwave irradiation and their characteristics assessment. Open Agriculture. 2020; 5(1): 227-235.  https://doi.org/10.1515/opag-2020-0024
58.    Ahmadi O, Jafarizadeh-Malmiri H, Jodeiri N. Eco-friendly microwave-enhanced green synthesis of silver nanoparticles using Aloe vera leaf extract and their physico-chemical and antibacterial studies. Green Processing and Synthesis. 2018; 7(3): 231-240. https://doi.org/10.1515/gps-2017-0039
59.    Eskandari-Nojedehi M, Jafarizadeh-Malmiri H, Rahbar-Shahrouzi J. Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: physico-chemical characteristics and antifungal activity studies. Green Processing and Synthesis. 2018; 7(1): 38-47.
60.    Panahi-Kalamuei M, Salavati-Niasari M, Hosseinpour-Mashkani SM. Facile microwave synthesis, characterization, and solar cell application of selenium nanoparticles. Journal of Alloys and Compounds. 2014/12/25/ 2014; 617: 627-632. https://doi.org/10.1016/j.jallcom.2014.07.174
61.    Alhadrami HA, El-Din ASS, Hassan HM, et al. Development and evaluation of a self-nanoemulsifying drug delivery system for sinapic acid with improved antiviral efficacy against SARS-CoV-2. Pharmaceutics. 2023; 15(11): 2531. DOI 10.1515/gps-2017-0004
62.    Cao X, Xiong C, Zhao X, et al. Tuning self-assembly of amphiphilic sodium alginate-decorated selenium nanoparticle surfactants for antioxidant Pickering emulsion. International Journal of Biological Macromolecules. 2022; 210: 600-613. https://doi.org/10.1016/j.ijbiomac.2022.04.214
63.    Gardouh A, Srag El-Din AS, Moustafa Y, Gad S. Formulation factors of starch-based nanosystems preparation and their pharmaceutical application. Records of Pharmaceutical and Biomedical Sciences. 2021; 5(Pharmacology-Pharmaceutics): 28-39. DOI:  10.21608/rpbs.2020.51097.1080
64.    Gardouh AR, Srag El-Din AS, Salem MS, Moustafa Y, Gad S. Starch nanoparticles for enhancement of oral bioavailability of a newly synthesized thienopyrimidine derivative with anti-proliferative activity against pancreatic cancer. Drug Des Devel Ther. 2021: 3071-3093. https://doi.org/10.2147/DDDT.S321962
65.    Chauhan P, Bhasin KK, Chaudhary S. High selectivity and adsorption proficiency of surfactant-coated selenium nanoparticles for dye removal application. Environmental Science and Pollution Research. 2021; 28(43): 61344-61359.  https://doi.org/10.1007/s11356-021-15024-9
66.    Gardouh AR, El-Din AS, Mostafa Y, Gad S. Starch Nanoparticles Preparation and Characterization by in situ combination of Sono-precipitation and Alkali hydrolysis under Ambient Temperature. Research Journal of Pharmacy and Technology. 2021; 14(7): 3543-3552. DOI: 10.52711/0974-360X.2021.00614
67.    McNamee CE, Kawakami H. Effect of the surfactant charge and concentration on the change in the forces between two charged surfaces in surfactant solutions by a liquid flow. Langmuir. 2020; 36(8): 1887-1897.  https://doi.org/10.1021/acs.langmuir.9b03377
68.    Samuel G, Nazim U, El-Din AS. Physicochemical characterization of Novel Particulate Delivery Systems for Antitumor/metastatic Therapeutics. Research Journal of Pharmacy and Technology. 2021; 14(9): 4837-4844. DOI: 10.52711/0974-360X.2021.00840
69.    Samuel G, Nazim U, El-Din AS. Optimization of PLGA nanoparticles for delivery of Novel anticancer CK-10 peptide. Research Journal of Pharmacy and Technology. 2021; 14(10): 5371-5379. DOI : 10.52711/0974-360X.2021.00937
70.    Yu B, You P, Song M, Zhou Y, Yu F, Zheng W. A facile and fast synthetic approach to create selenium nanoparticles with diverse shapes and their antioxidation ability. New Journal of Chemistry. 2016; 40(2): 1118-1123. DOI: 10.1039/c5nj02519b
71.    Thanh NT, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chemical reviews. 2014; 114(15): 7610-7630. https://doi.org/10.1021/cr400544s
72.    Zhang R, Khalizov A, Wang L, Hu M, Xu W. Nucleation and growth of nanoparticles in the atmosphere. Chemical reviews. 2012; 112(3): 1957-2011. https://doi.org/10.1021/cr2001756
73.    Levine R, Manz J. The effect of reagent energy on chemical reaction rates: An information theoretic analysis. The Journal of Chemical Physics. 1975; 63(10): 4280-4303. https://doi.org/10.1063/1.431198
74.    Wei Z, Li Y, Cooks RG, Yan X. Accelerated reaction kinetics in microdroplets: Overview and recent developments. Annual Review of Physical Chemistry. 2020; 71(1): 31-51. https://doi.org/10.1146/annurev-physchem-121319-110654
75.    Frawley PJ, Mitchell NA, Ó'Ciardhá CT, Hutton KW. The effects of supersaturation, temperature, agitation and seed surface area on the secondary nucleation of paracetamol in ethanol solutions. Chemical engineering science. 2012; 75: 183-197. https://doi.org/10.1016/j.ces.2012.03.041
76.    Srag El-Din AS. Azithromycin loaded chitosan nanoparticles preparation and in-vitro characterization. Delta University Scientific Journal. 2022; 5(2). DOI: 10.21608/dusj.2022.275433
77.    Jog R, Burgess DJ. Pharmaceutical amorphous nanoparticles. Journal of pharmaceutical sciences. 2017; 106(1): 39-65. https://doi.org/10.1016/j.xphs.2016.09.014
78.    Li Y, White T, Lim S. Low-temperature synthesis and microstructural control of titania nano-particles. Journal of solid state chemistry. 2004; 177(4-5): 1372-1381. https://doi.org/10.1016/j.jssc.2003.11.016
79.    Tavakoli AH, Maram PS, Widgeon SJ, et al. Amorphous alumina nanoparticles: structure, surface energy, and thermodynamic phase stability. The Journal of Physical Chemistry C. 2013; 117(33): 17123-17130. https://doi.org/10.1021/jp405820g

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available