Author(s): Hamza, Nimisha, Abhishek Singh

Email(s): nsrivastava3@lko.amity.edu

DOI: 10.52711/0974-360X.2025.00347   

Address: Hamza, Nimisha*, Abhishek Singh
Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India.
*Corresponding Author

Published In:   Volume - 18,      Issue - 5,     Year - 2025


ABSTRACT:
This review outlines the potential application of nanoparticles as a remedy of drug solubility and bioavailability problems which are the major drawbacks in traditional drug delivery systems. Nanoparticles have the unique characteristics of size, high surface area, and versatility for modulation of their properties for specific functions which help improve the bioactive compound's pharmacokinetic and pharmacodynamic factors. Nanoparticles improve bioavailability by increasing the solubility of poorly soluble drugs and you get better therapeutic efficacy and fewer side effects. In addition, their ability to target specific tissue locations in the body allows for reduced systemic toxicity and improved therapeutic effects. Research in nanoparticle-based drug delivery is ongoing; however, it is predicted that they will play one of the most significant roles in the future development of such strategies, and their ability to restructure existing drugs represents a change from a mere evolution to maintaining a revolution of the revolution.


Cite this article:
Hamza, Nimisha, Abhishek Singh. Current Insights on Preparation Methods and Characterisation of Nanoparticles. Research Journal of Pharmacy and Technology. 2025;18(5):2433-8. doi: 10.52711/0974-360X.2025.00347

Cite(Electronic):
Hamza, Nimisha, Abhishek Singh. Current Insights on Preparation Methods and Characterisation of Nanoparticles. Research Journal of Pharmacy and Technology. 2025;18(5):2433-8. doi: 10.52711/0974-360X.2025.00347   Available on: https://rjptonline.org/AbstractView.aspx?PID=2025-18-5-70


15. REFERENCES:
1.    Ansari MJ. An overview of techniques for multifold enhancement in solubility of poorly soluble drugs. Current Issues in Pharmacy and Medical Sciences. 2019; 32(4): 203–9.
2.    Gupta KR, Dakhole MR, Jinnawar KS, Umekar MJ. Strategies for improving hydrophobic drugs solubility and bioavailability. International Journal of Pharmaceutical Chemistry and Analysis. 2023; 10(3):164–74.
3.    Da Silva FLO, Marques MBDF, Kato KC, Carneiro G. Nanonization techniques to overcome poor water-solubility with drugs. Expert Opin Drug Discov. 2020; 15(7): 853–64.
4.    Khan KU, Minhas MU, Badshah SF, Suhail M, Ahmad A, Ijaz S. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs. Life Sci. 2022; 291: 120301.
5.    Barkat MdA, Harshita, Rizwanullah Md, Pottoo FH, Beg S, Akhter S, et al. Therapeutic Nanoemulsion: Concept to Delivery. Curr Pharm Des. 2020; 26(11): 1145–66.
6.    Tan SLJ, Billa N. Improved Bioavailability of Poorly Soluble Drugs through Gastrointestinal Muco-Adhesion of Lipid Nanoparticles. Pharmaceutics. 2021; 13(11): 1817.
7.    Kumar S, Dilbaghi N, Saharan R, Bhanjana G. Nanotechnology as Emerging Tool for Enhancing Solubility of Poorly Water-Soluble Drugs. Bionanoscience. 2012; 2(4): 227–50.
8.    Mansoori GA. An Introduction to Nanoscience and Nanotechnology. 2017. page 3–20.
9.    Kelsall RW, Hamley IW, Geoghegan M, editors. Nanoscale Science and Technology. Wiley; 2005.
10.    Sathali AHA, Prakash JCSK. Formulation and Evaluation of Amisulpride Nanocrystal Tablets. Res J Pharm Technol. 2015; 8(9): 1294.
11.    Amber Vyas BG. Technologies to Counter Poor Solubility Issues: A Review. . Res J Pharm Technol. 2013; 6(11): 1258–70.
12.    Jacob S, Kather F, Morsy M, Boddu S, Attimarad M, Shah J, et al. Advances in Nanocarrier Systems for Overcoming Formulation Challenges of Curcumin: Current Insights. Nanomaterials. 2024; 14(8): 672.
13.    Liu Q, Han C, Tian Y, Liu T. Fabrication of curcumin-loaded zein nanoparticles stabilized by sodium caseinate/sodium alginate: Curcumin solubility, thermal properties, rheology, and stability. Process Biochemistry. 2020; 94: 30–8.
14.    Sathali AHA, Prakash JCSK. Formulation and Evaluation of Amisulpride Nanocrystal Tablets. Res J Pharm Technol. 2015; 8(9): 1294.
15.    Wang Y, Shardt N, Lu C, Li H, Elliott JAW, Jin Z. Validity of the Kelvin equation and the equation-of-state-with-capillary-pressure model for the phase behavior of a pure component under nanoconfinement. Chem Eng Sci 2020; 226: 115839.
16.    Hou J, Xu X, Lan L, Miao L, Xu Y, You G, et al. Transport behavior of micro polyethylene particles in saturated quartz sand: Impacts of input concentration and physicochemical factors. Environmental Pollution. 2020; 263: 114499.
17.    Mathew AT KA. Conventional and Innovative Solubility Augmentation Techniques: with Emphasis on Flash Nanoprecipitation. Res J Pharm Technol. 2020; 13(11): 555583 to 5590.
18.    Rathod PS, Narkhede MR, Dongare SL. A Recent Review on Nanocrystal Manufacturing Techniques with Pharmaceutical Application. Current Nanomedicine. 2024; 14(1): 4–12.
19.    Levy R, Okun Z, Shpigelman A. High-Pressure Homogenization: Principles and Applications Beyond Microbial Inactivation. Food Engineering Reviews. 2021; 13(3): 490–508.
20.    Yong SXM, Song CP, Choo WS. Impact of High-Pressure Homogenization on the Extractability and Stability of Phytochemicals. Front Sustain Food Syst. 2021; 4.
21.    Umurzakov U, Obidov B, Vokhidov O, Musulmanov F, Ashirov B, Suyunov J. Force effects of the flow on energy absorbers in the presence of cavitation. E3S Web of Conferences. 2021; 264: 03076.
22.    Xu W, Li C, Zhang Y, Ali HM, Sharma S, Li R, et al. Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. International Journal of Extreme Manufacturing. 2022; 4(4): 042003.
23.    Oyinloye TM, Yoon WB. Effect of Freeze-Drying on Quality and Grinding Process of Food Produce: A Review. Processes. 2020; 8(3): 354.
24.    Liu J, Tu L, Cheng M, Feng J, Jin Y. Mechanisms for oral absorption enhancement of drugs by nanocrystals. J Drug Deliv Sci Technol. 2020; 56: 101607.
25.    Jaiswal P, Mishra A, Kesharwani D, Das Paul S. Overview on Ocular Drug Delivery through Colloidal Nano-Suspension. Res J Pharm Technol. 2023; 1533–9.
26.    Jakka V, Munagala G, Patnala DSP, Kuruba R. Nanosuspensions: A Stratergy to Increase The Solubility and Bioavailability of Poorly Water-Soluble Drugs. Asian Journal of Pharmaceutical and Clinical Research. 2023;38–45.
27.    Möschwitzer J, Achleitner G, Pomper H, Müller RH. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. European Journal of Pharmaceutics and Biopharmaceutics. 2004; 58(3): 615–9.
28.    Grau MJ, Kayser O, Müller RH. Nanosuspensions of poorly soluble drugs — reproducibility of small scale production. Int J Pharm. 2000; 196(2): 155–9.
29.    Kovalchuk NM, Johnson D, Sobolev V, Hilal N, Starov V. Interactions between nanoparticles in nanosuspension. Adv Colloid Interface Sci. 2019; 272: 102020.
30.    Pawar SS DBNSSR. Nanosuspension technologies for delivery of drugs. Nanosci Nanotech Res. 2017; 4(2): 59–66.
31.    Huang C, Ruan S, Cai T, Yu L. Fast Surface Diffusion and Crystallization of Amorphous Griseofulvin. J Phys Chem B. 2017; 121(40): 9463–8.
32.    Uke SJ, Chaudhari GN, Bodade AnjaliB, Mardikar SP. Morphology dependant electrochemical performance of hydrothermally synthesized NiCo2O4 nanomorphs. Mater Sci Energy Technol. 2020; 3: 289–98.
33.    Senthil Rajan D, Subashini R, Murugananthan G. Pharmaceutical nanocrystals. In: Handbook on Nanobiomaterials for Therapeutics and Diagnostic Applications. Elsevier. 2021. page 409–20.
34.    Abid N, Khan AM, Shujait S, Chaudhary K, Ikram M, Imran M, et al. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv Colloid Interface Sci. 2022; 300: 102597.
35.    Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. J Nanobiotechnology 2022; 20(1): 262.
36.    Islas-Valdez S, López-Rayo S, Hristov-Emilov H, Hernández-Apaolaza L, Lucena JJ. Assessing metal–lignosulfonates as fertilizers using gel filtration chromatography and high-performance size exclusion chromatography. Int J Biol Macromol. 2020; 142: 163–71.
37.    Vikova M, Sakurai S, Periyasamy AP, Yasunaga H, Pechočiaková M, Ujhelyiová A. Differential scanning calorimetry/small-angle X-ray scattering analysis of ultraviolet sensible polypropylene filaments. Textile Research Journal. 2022; 92(17–18): 3142–53.
38.    Doumeng M, Makhlouf L, Berthet F, Marsan O, Delbé K, Denape J, et al. A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polym Test. 2021; 93: 106878.
39.    Suhesti TS, Fudholi A, Martien R, Martono S. Pharmaceutical nanoparticle technologies: An approach to improve drug solubility and dissolution rate of Piroxicam. Res J Pharm Technol. 2017; 10(4): 968.
40.    Seftian M, Dian Laksitorini M, Saifullah Sulaiman TN. Enhancement of Valsartan Solubility by Amorphous solid Dispersion Ternary System: An Optimization and Characterization. Res J Pharm Technol. 2024; 3717–24.
41.    Chakravorty R. Nanosuspension as an emerging Nanotechnology and Techniques for its Development. Res J Pharm Technol. 2022;489–93.
42.    Krishnan PRR, Sivakumar R. Nanotechnology: Modern Formulation and Evaluation Techniques -An Overview. Res J Pharm Technol. 2019; 12(8): 4039.
43.    Sandler SR, Karo W, Bonesteel JA, Pearce EM. Gel permeation chromatography. In: Polymer Synthesis and Characterization. Elsevier; 1998. page 140–51.
44.    Molecular Weight Determination. In: Handbook of Heavy Oil Properties and Analysis. Wiley; 2023. page 357–81.
45.    Dhiman S, Thakur GS, Anand S, Yadav P. Formulation and Evaluation of Solid Lipid Nanoparticles for controlled delivery of Zidovudine. Res J Pharm Technol. 2021; 2548–56.
46.    Shaik MR, Pavani A, Rao VUM, Gupta VRM. Biological Synthesis and Characterization of Silver Nanoparticles by Bacillus subtilis. Res J Pharm Technol. 2017; 10(7): 2367.
47.    Sweta S, Chaudhary A, Kumar T, Kumar A, Pandit V, Ashawat MS. A Review on General Concept and Preparation Methods together with Characterization Techniques of Silver Nanoparticles. Res J Pharm Technol. 2023; 2819–24.
48.    Minoguchi H, Teus M, Fu H. Atomic force microscopy and scanning electron microscopy for characterization of interface surface roughness after ELITA femtosecond laser treatments. 2024.
49.    Lefebvre J, Galli F, Bianchi CL, Patience GS, Boffito DC. Experimental methods in chemical engineering: X‐ray photoelectron spectroscopy‐XPS. Can J Chem Eng. 2019; 97(10): 2588–93.
50.    Sabourian P, Yazdani G, Ashraf SS, Frounchi M, Mashayekhan S, Kiani S, et al. Effect of Physico-Chemical Properties of Nanoparticles on Their Intracellular Uptake. Int J Mol Sci 2020; 21(21): 8019.
51.    Otto F, Sun X, Schulz F, Sanchez‐Cano C, Feliu N, Westermeier F, et al. X‐Ray Photon Correlation Spectroscopy Towards Measuring Nanoparticle Diameters in Biological Environments Allowing for the In Situ Analysis of their Bio‐Nano Interface. Small. 2022; 18(37).
52.    Tyukalova E, Vimal Vas J, Ignatans R, Mueller AD, Medwal R, Imamura M, et al. Challenges and Applications to Operando and In Situ TEM Imaging and Spectroscopic Capabilities in a Cryogenic Temperature Range. Acc Chem Res. 2021; 54(16): 3125–35.
53.    Wren S, Minelli C, Pei Y, Akhtar N. Evaluation of Particle Size Techniques to Support the Development of Manufacturing Scale Nanoparticles for Application in Pharmaceuticals. J Pharm Sci. 2020; 109(7): 2284–93.
54.    Singh MK, Singh A. Transmission electron microscope. In: Characterization of Polymers and Fibres. Elsevier; 2022; 435–48.
55.    Kim W, Yoon DK. Electron microscopy analysis of soft materials with  freeze‐fracture techniques. Bull Korean Chem Soc. 2023; 44(2): 153–62.
56.    Atherton E, Tough D. Particle–size Determination with the Disc Centrifuge. Journal of the Society of Dyers and Colourists. 1965; 81(12): 624–31.
57.    P. M, Valmiki A, Gangadhara A, D. G. Identification of Chemical Constituents, Chromatographic profiling of PHE (Poly Herbal Extract) of selected Indian Medicinal Herbs and its Antioxidant activity Evaluation. Res J Pharm Technol. 2022; 3611–7.
58.    Attard P, Antelmi D, Larson I. Comparison of the Zeta Potential with the Diffuse Layer Potential from Charge Titration. Langmuir. 2000;16(4):1542–52.
59.    Nguyen HH, Nguyen DA, Nguyen TK. Biological Activities of poly (Lactic acid) polymer produced from Lactobacillus rhamnosus PN0 4. Res J Pharm Technol. 2018; 11(7): 3057.

Recomonded Articles:

Research Journal of Pharmacy and Technology (RJPT) is an international, peer-reviewed, multidisciplinary journal.... Read more >>>

RNI: CHHENG00387/33/1/2008-TC                     
DOI: 10.5958/0974-360X 

1.3
2021CiteScore
 
56th percentile
Powered by  Scopus


SCImago Journal & Country Rank

Journal Policies & Information


Recent Articles




Tags


Not Available